dataset_info:
- config_name: asian_to_black
features:
- name: text
dtype: string
- name: swapped
dtype: string
- name: masked
dtype: string
- name: source
dtype: string
- name: target
dtype: string
- name: source_id
dtype: string
- name: target_id
dtype: string
splits:
- name: train
num_bytes: 39396761
num_examples: 27016
- name: val
num_bytes: 39396761
num_examples: 27016
- name: test
num_bytes: 39396761
num_examples: 27016
download_size: 74877080
dataset_size: 118190283
- config_name: asian_to_white
features:
- name: text
dtype: string
- name: swapped
dtype: string
- name: masked
dtype: string
- name: source
dtype: string
- name: target
dtype: string
- name: source_id
dtype: string
- name: target_id
dtype: string
splits:
- name: train
num_bytes: 41288195
num_examples: 27016
- name: val
num_bytes: 41288195
num_examples: 27016
- name: test
num_bytes: 41288195
num_examples: 27016
download_size: 78565107
dataset_size: 123864585
- config_name: black_to_white
features:
- name: text
dtype: string
- name: swapped
dtype: string
- name: masked
dtype: string
- name: source
dtype: string
- name: target
dtype: string
- name: source_id
dtype: string
- name: target_id
dtype: string
splits:
- name: train
num_bytes: 59726209
num_examples: 36694
- name: val
num_bytes: 59726209
num_examples: 36694
- name: test
num_bytes: 59726209
num_examples: 36694
download_size: 114734341
dataset_size: 179178627
configs:
- config_name: asian_to_black
data_files:
- split: train
path: asian_to_black/train-*
- split: val
path: asian_to_black/val-*
- split: test
path: asian_to_black/test-*
- config_name: asian_to_white
data_files:
- split: train
path: asian_to_white/train-*
- split: val
path: asian_to_white/val-*
- split: test
path: asian_to_white/test-*
- config_name: black_to_white
data_files:
- split: train
path: black_to_white/train-*
- split: val
path: black_to_white/val-*
- split: test
path: black_to_white/test-*
license: cc-by-sa-4.0
language:
- en
GRADIEND Race Data
This dataset consists of templated sentences with the masked word being sensitive to race, e.g., African.
See GENTER and GRADIEND Religion Data for similar datasets.
Usage
genter = load_dataset('aieng-lab/gradiend_race_data', pair_of_races, trust_remote_code=True, split=split)
split can be either train, val, test, or all.
pair_of_races can be asian_to_black, asian_to_white, or black_to_white.
Dataset Details
Dataset Description
This dataset is a filtered version of Wikipedia-10 containing only sentences that contain a race bias sensitive word of the source_id race. We used the same bias sensitive words as defined by Maede et al. (2021) (bias attribute words).
Based on the masked term (source), an associated target is derived from a corresponding bias attribute pair, matching the casing of source (e.g., White gets to Black and not black).
Dataset Sources
- Repository: github.com/aieng-lab/gradiend
- Paper:
- Original Data: Wikipedia-10 (a subset of English Wikipedia)
Dataset Structure
text: the original entry of Wikipedia-10masked: the masked version oftext, i.e., with template masks for the name ([NAME]) and the pronoun ([PRONOUN])swapped: likemaskedbut with insertedtargetfor[MASK]source: the word at the position of[MASK]inmasked(e.g.,African)source_id: a normalized identifier for thesource(e.g.,black). All entries of the samepair_of_raceshave the samesource_id.target: the word inserted for[MASK]inswappedtarget_id: a normalized identifier for thetarget. All entries of the samepair_of_raceshave the sametarget_id.
Dataset Creation
Curation Rationale
For the training of a race bias GRADIEND models, a diverse dataset is required to asses model gradients relevant to bias-sensitive information.
Source Data
The dataset is derived from Wikipedia-10 by filtering it and extracting the template structure. Whe Wikipedia-10 dump is derived from English Wikipedia by Maede et al. 2021.
Limitations
Note that the splitting is performed entirely random. Thus, the same masked text might occur in other splits (in combination with other target words). The same limitation holds across different pair_of_races.
Citation
BibTeX:
@misc{drechsel2025gradiendfeaturelearning,
title={{GRADIEND}: Feature Learning within Neural Networks Exemplified through Biases},
author={Jonathan Drechsel and Steffen Herbold},
year={2025},
eprint={2502.01406},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.01406},
}