Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Traceix AI Security Telemetry
|
| 2 |
|
| 3 |
These files are uploaded monthly automatically by Traceix and provided as is under the CC BY 4.0 license. You can test the datasets simply by doing the following:
|
|
@@ -46,43 +85,4 @@ clf = LogisticRegression(max_iter=1000)
|
|
| 46 |
clf.fit(X_train, y_train)
|
| 47 |
|
| 48 |
print("Test accuracy:", clf.score(X_test, y_test))
|
| 49 |
-
```
|
| 50 |
-
|
| 51 |
-
---
|
| 52 |
-
license: cc-by-4.0
|
| 53 |
-
tags:
|
| 54 |
-
- malware
|
| 55 |
-
- cybersecurity
|
| 56 |
-
- ATT&CK
|
| 57 |
-
- MBC
|
| 58 |
-
- pe-files
|
| 59 |
-
- elf-files
|
| 60 |
-
- binary-classification
|
| 61 |
-
- tabular-data
|
| 62 |
-
- threat-intelligence
|
| 63 |
-
- digital-forensics
|
| 64 |
-
- reverse-engineering
|
| 65 |
-
- incident-response
|
| 66 |
-
- security-telemetry
|
| 67 |
-
- ai-security
|
| 68 |
-
- security-ml
|
| 69 |
-
- mitre-attack
|
| 70 |
-
- mitre-mbc
|
| 71 |
-
- windows
|
| 72 |
-
- linux
|
| 73 |
-
- executable-files
|
| 74 |
-
- static-analysis
|
| 75 |
-
- behavioral-analysis
|
| 76 |
-
- classification
|
| 77 |
-
- anomaly-detection
|
| 78 |
-
- intrusion-detection
|
| 79 |
-
- explainable-ai
|
| 80 |
-
- model-evaluation
|
| 81 |
-
- benchmarking
|
| 82 |
-
- training
|
| 83 |
-
- evaluation
|
| 84 |
-
- research
|
| 85 |
-
- education
|
| 86 |
-
- teaching
|
| 87 |
-
pretty_name: traceix-corpus
|
| 88 |
-
---
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
tags:
|
| 4 |
+
- malware
|
| 5 |
+
- cybersecurity
|
| 6 |
+
- ATT&CK
|
| 7 |
+
- MBC
|
| 8 |
+
- pe-files
|
| 9 |
+
- elf-files
|
| 10 |
+
- binary-classification
|
| 11 |
+
- tabular-data
|
| 12 |
+
- threat-intelligence
|
| 13 |
+
- digital-forensics
|
| 14 |
+
- reverse-engineering
|
| 15 |
+
- incident-response
|
| 16 |
+
- security-telemetry
|
| 17 |
+
- ai-security
|
| 18 |
+
- security-ml
|
| 19 |
+
- mitre-attack
|
| 20 |
+
- mitre-mbc
|
| 21 |
+
- windows
|
| 22 |
+
- linux
|
| 23 |
+
- executable-files
|
| 24 |
+
- static-analysis
|
| 25 |
+
- behavioral-analysis
|
| 26 |
+
- classification
|
| 27 |
+
- anomaly-detection
|
| 28 |
+
- intrusion-detection
|
| 29 |
+
- explainable-ai
|
| 30 |
+
- model-evaluation
|
| 31 |
+
- benchmarking
|
| 32 |
+
- training
|
| 33 |
+
- evaluation
|
| 34 |
+
- research
|
| 35 |
+
- education
|
| 36 |
+
- teaching
|
| 37 |
+
pretty_name: traceix-corpus
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
# Traceix AI Security Telemetry
|
| 41 |
|
| 42 |
These files are uploaded monthly automatically by Traceix and provided as is under the CC BY 4.0 license. You can test the datasets simply by doing the following:
|
|
|
|
| 85 |
clf.fit(X_train, y_train)
|
| 86 |
|
| 87 |
print("Test accuracy:", clf.score(X_test, y_test))
|
| 88 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|