Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: cc-by-4.0
|
| 3 |
tags:
|
|
|
|
| 1 |
+
# Traceix AI Security Telemetry
|
| 2 |
+
|
| 3 |
+
These files are uploaded monthly automatically by Traceix and provided as is under the CC BY 4.0 license. You can test the datasets simply by doing the following:
|
| 4 |
+
|
| 5 |
+
```python
|
| 6 |
+
# do_dataset_publishing()
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from sklearn.linear_model import LogisticRegression
|
| 10 |
+
from sklearn.model_selection import train_test_split
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Load the Traceix telemetry dataset
|
| 14 |
+
ds = load_dataset(
|
| 15 |
+
"PerkinsFund/traceix-ai-security-telemetry",
|
| 16 |
+
data_files="traceix-telemetry-corpus-2025-12.jsonl", # Or whatever month you want
|
| 17 |
+
split="train",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# We will need to flatten nested JSON into columns
|
| 21 |
+
df = ds.to_pandas()
|
| 22 |
+
df_flat = pd.json_normalize(df.to_dict(orient="records"))
|
| 23 |
+
|
| 24 |
+
# Define the features and label based on schema
|
| 25 |
+
feature_cols = [
|
| 26 |
+
"decrypted_training_data.SizeOfCode",
|
| 27 |
+
"decrypted_training_data.SectionsMeanEntropy",
|
| 28 |
+
"decrypted_training_data.ImportsNb",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
label_col = "model_classification_info.identified_class"
|
| 32 |
+
|
| 33 |
+
# We don't have to but we will drop the rows with missing data
|
| 34 |
+
df_flat = df_flat.dropna(subset=feature_cols + [label_col])
|
| 35 |
+
|
| 36 |
+
X = df_flat[feature_cols].values
|
| 37 |
+
y = (df_flat[label_col] == "malicious").astype(int)
|
| 38 |
+
|
| 39 |
+
# Start the training and test split
|
| 40 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 41 |
+
X, y, test_size=0.2, random_state=42
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Test the basic file classifier
|
| 45 |
+
clf = LogisticRegression(max_iter=1000)
|
| 46 |
+
clf.fit(X_train, y_train)
|
| 47 |
+
|
| 48 |
+
print("Test accuracy:", clf.score(X_test, y_test))
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
---
|
| 52 |
license: cc-by-4.0
|
| 53 |
tags:
|