ClinicalMap25-for-SnomedCT
ClinicalMap25-for-SnomedCT provides a dense, token-level mapping of SnomedCT clinical concepts to the ClinicalEncoder25 embedding space. This resource enables fast, interpretable semantic search and reasoning over medical terminology, directly compatible with the ClinicalEncoder25 model.
Key Features
- 707,574 SnomedCT Concepts: Each concept is represented as a 1024-dimensional embedding, normalized for efficient cosine similarity computation.
- Optimized for Speed: Embeddings are stored as 8-bit floats, enabling fast matrix multiplication on supported hardware.
- Padding for Efficiency: 10 extra zero-padded rows ensure compatibility with optimized matrix operations (e.g.,
torch._scaled_mm).
- Ready for Integration: Designed for use with ClinicalEncoder25.
Files
| File Name |
Description |
clinical_map_25_for_sct_concepts.pth |
707,584 rows (707,574 concepts + 10 padding) of 1024 8-bit floats, normalized for cosine similarity. |
sct_concepts.txt |
707,574 SnomedCT concept names, one per line. May contain duplicates. |
Usage
1. Load the Embeddings
import torch
concept_vectors = torch.load("clinical_map_25_for_sct_concepts.pth", map_location="cpu")
concept_vectors = concept_vectors.to(torch.float16)
2. Load the Concept Names
with open("sct_concepts.txt", "r") as f:
concept_names = [line.strip() for line in f.readlines()]
3. Perform Semantic Search
from transformers import AutoModel, AutoTokenizer
MODEL_NAME = "Parallia/ClinicalEncoder25-Diagnosable-Colbert-L2-for-medical-texts"
model, tokenizer = AutoModel.from_pretrained(MODEL_NAME), AutoTokenizer.from_pretrained(MODEL_NAME)
doc = "The patient suffers from PAPA syndrome. The patient therefore takes NSAIDs daily, as prophylaxis."
doc_inputs = tokenizer(
doc,
return_tensors="pt",
add_special_tokens=True,
)
doc_tokens = [
tokenizer.decode([tid], clean_up_tokenization_spaces=False)
for tid in doc_inputs["input_ids"][0].tolist()
]
with torch.no_grad():
doc_inputs = {k: v.to(model.device) for k, v in doc_inputs.items()}
doc_outputs = model(**doc_inputs)
doc_vectors = doc_outputs.last_hidden_state[0]
doc_vectors = (doc_vectors / doc_vectors.norm(dim=1, keepdim=True).clamp_min(1e-12))
doc_vectors = doc_vectors.to(concept_vectors.device).to(concept_vectors.dtype)
if concept_vectors.dtype != torch.float8_e4m3fn:
similarities = torch.mm(doc_vectors, concept_vectors.t())
else:
unit_vector = torch.tensor(1.0, device=concept_vectors.device, dtype=torch.float32)
similarities = torch._scaled_mm(
doc_vectors, concept_vectors.T,
unit_vector, unit_vector,
out_dtype=torch.float16
)
how_many_to_display = 3
for i, token in enumerate(doc_tokens[1:]):
print(f"\nToken #{i} '{token}':")
top_indices = similarities[i].topk(how_many_to_display, largest=True, sorted=True).indices
for idx in top_indices:
print(f"- {concept_names[idx]} ({similarities[0, idx].item()}")
Notes
- Padding Rows: The last 10 rows are zero-padded and will never match any query.
- Memory Efficiency: Use FP8 for minimal memory usage. If FP8 is not supported, use FP16.
- SnomedCT Choice: SnomedCT was selected for its balance between medical coverage and ontology size, compared to UMLS (larger) and ICD-10 (smaller).
- Duplicates: Concept names may contain duplicates; this map is for demonstration purposes.
License
This dataset is released under the CC-BY-NC 4.0 license. For commercial use, please obtain a license.
You might also need a SnomedCT license if you intend to map the output of this script to the SnomedCT ontology.
References