Work_UA / README.md
btaras22's picture
Update README.md
bb3e0a6 verified
---
language:
- uk
size_categories:
- 10K<n<100K
---
# WorkUA Resumes Dataset
## Dataset Summary
This dataset consists of **104,966 resume entries** collected from publicly available pages on [Work.ua](https://www.work.ua/resumes/). Each entry represents structured information extracted from a candidate's resume, including education, work experience, skills, languages, disability status, veteran status, driver license presence, and additional profile metadata.
The dataset is designed for research and development of:
- Resume parsing models
- Information extraction systems
- Vacancy-candidate matching algorithms
- NLP pipelines for Ukrainian-language documents
- Data engineering and ML training workflows
- Career recommendation systems
- Applicant ranking models
All personally identifying information has been removed or anonymized.
## Dataset Structure
The dataset is split into three files based on the extraction method and data complexity:
### File Descriptions
| File | Rows | Description | Extraction Method |
|------|------|-------------|-------------------|
| `resumes_regex.ndjson` | 84,316 | Standard resumes with structured information | Regular expressions |
| `resumes_files_gemini.ndjson` | 14,397 | Resumes uploaded as files (PDF, DOC, etc.) | Gemini 2.5 Flash |
| `resumes_extended_gemini.ndjson` | 5,253 | Resumes with complex additional information | Gemini 2.5 Flash |
**Total**: 104,966 resumes
### Data Processing Pipeline
1. **Source**: Resumes were scraped from Work.ua website where candidates publicly posted their information
2. **Format conversion**: Original HTML format was transformed into Markdown for easier processing
3. **Extraction methods**:
- **Regex extraction**: Used for standard, well-structured resumes with consistent formatting
- **Gemini 2.5 Flash**: Used for file-based uploads and resumes with complex, unstructured additional information that required AI-powered parsing
### Schema Overview
All three files share the same schema with **21 fields**:
```python
Schema([
('id', String),
('url', String),
('title', String),
('candidate_name', String),
('age', Int64),
('city', String),
('desired_salary', Int64),
('employment_type', String),
('work_location_preference', String),
('driver_license', Boolean),
('creation_date', Datetime(time_unit='us', time_zone=None)),
('other_resumes',
List(Struct({'title': String, 'url': String, 'resume_id': String, 'description': String}))),
('veteran', Boolean),
('disability', String),
('work_experiences',
List(Struct({'position': String, 'start_date': String, 'end_date': String, 'company': String, 'city': String, 'industry': String, 'responsibilities': String}))),
('recommendations',
List(Struct({'name': String, 'position': String}))),
('languages', List(Struct({'language': String, 'level': String}))),
('skills', List(String)),
('educations',
List(Struct({'institution': String, 'faculty': String, 'city': String, 'level': String, 'start_year': Int64, 'end_year': Int64}))),
('additional_educations',
List(Struct({'institution': String, 'start_year': Int64, 'end_year': Int64}))),
('additional_info', String)
])
```
### Nested Structure Details
#### `work_experiences`
- `position`: Job title
- `start_date`: Start date
- `end_date`: End date
- `company`: Company name
- `city`: Work location
- `industry`: Industry sector
- `responsibilities`: Job responsibilities description
#### `educations`
- `institution`: Educational institution name
- `faculty`: Faculty/department name
- `city`: Institution location
- `level`: Education level (e.g., "Вища", "Середня спеціальна")
- `start_year`: Year started
- `end_year`: Year graduated
#### `additional_educations`
- `institution`: Training institution/course name
- `start_year`: Year started
- `end_year`: Year completed
#### `languages`
- `language`: Language name (e.g., "Українська", "English")
- `level`: Proficiency level (e.g., "вільно", "базовий", "intermediate")
#### `recommendations`
- `name`: Recommender's name
- `position`: Recommender's position/title
#### `other_resumes`
- `title`: Title of other resume by same candidate
- `url`: URL to the other resume
- `resume_id`: ID of the other resume
- `description`: Brief description
## Data Example
```json
{
"id": "123456",
"url": "https://www.work.ua/resumes/123456/",
"title": "Будівельник",
"candidate_name": "Іван",
"age": 32,
"city": "Київ",
"desired_salary": 25000,
"employment_type": "повна",
"work_location_preference": "офіс",
"driver_license": true,
"creation_date": "2025-03-10T12:30:00",
"veteran": false,
"disability": null,
"skills": ["Штукатурка", "Монтаж гіпсокартону"],
"languages": [{"language": "Українська", "level": "вільно"}],
"work_experiences": [
{
"position": "Будівельник",
"start_date": "2020-01",
"end_date": "present",
"company": "БудКомпанія",
"city": "Київ",
"industry": "Будівництво",
"responsibilities": "Виконання будівельних робіт"
}
],
"educations": [
{
"institution": "КНУБА",
"faculty": "Промислове та цивільне будівництво",
"city": "Київ",
"level": "Вища",
"start_year": 2012,
"end_year": 2016
}
],
"additional_educations": [],
"recommendations": [],
"other_resumes": [],
"additional_info": "Готовий до відряджень."
}
```
## Loading the Dataset
### Using Polars
```python
import polars as pl
# Load individual files
resumes_regex = pl.read_ndjson("resumes_regex.ndjson")
resumes_files = pl.read_ndjson("resumes_files_gemini.ndjson")
resumes_extended = pl.read_ndjson("resumes_extended_gemini.ndjson")
# Combine all resumes
all_resumes = pl.concat([resumes_regex, resumes_files, resumes_extended])
print(f"Total resumes: {len(all_resumes)}")
```
### Using Pandas
```python
import pandas as pd
# Load individual files
resumes_regex = pd.read_json("resumes_regex.ndjson", lines=True)
resumes_files = pd.read_json("resumes_files_gemini.ndjson", lines=True)
resumes_extended = pd.read_json("resumes_extended_gemini.ndjson", lines=True)
# Combine all resumes
all_resumes = pd.concat([resumes_regex, resumes_files, resumes_extended], ignore_index=True)
print(f"Total resumes: {len(all_resumes)}")
```
## Intended Use
- **Resume parsing**: Train and evaluate resume parsing models
- **Information extraction**: Develop IE systems for structured data extraction
- **Semantic search**: Build search engines for candidate discovery
- **Text classification**: Classify resumes by industry, job type, or skill level
- **Matching algorithms**: Develop vacancy-candidate matching systems
- **NLP research**: Study Ukrainian-language document processing
- **Career analytics**: Analyze job market trends and skill requirements
- **Recommendation systems**: Build career path and job recommendation engines
## Limitations
- Some fields may be incomplete due to original document variability
- Date formats may vary across entries (especially in `work_experiences`)
- The quality of extraction may vary between regex-based and Gemini-based processing
- Some `additional_info` fields may contain unstructured or noisy data
- Language proficiency levels use non-standardized terms
- Salary information may be missing for many entries
## Data Quality Notes
### Extraction Method Comparison
- **Regex extraction** (`resumes_regex.ndjson`):
- Higher consistency for well-structured fields
- May miss information in non-standard formats
- **Gemini extraction** (`resumes_files_gemini.ndjson`, `resumes_extended_gemini.ndjson`):
- Better handling of complex, unstructured information
- May introduce parsing variations
- Can extract information from diverse file formats
## Ethical Considerations
- All resumes were collected from publicly available pages on Work.ua
- Personally identifying information has been removed or anonymized
- Contact information (phone numbers, emails) is not included
- The dataset should be used for research and development purposes only
- Users should respect privacy and not attempt to re-identify individuals
## Language
The dataset is primarily in **Ukrainian**, with some entries containing information in Russian or other languages.
## Acknowledgments
- Data source: [Work.ua](https://www.work.ua/)
- Extraction tools: Google Gemini 2.5 Flash for AI-powered parsing
- Processing framework: Polars for efficient data handling