|
|
--- |
|
|
language: |
|
|
- uk |
|
|
size_categories: |
|
|
- 10K<n<100K |
|
|
--- |
|
|
# WorkUA Resumes Dataset |
|
|
|
|
|
## Dataset Summary |
|
|
|
|
|
This dataset consists of **104,966 resume entries** collected from publicly available pages on [Work.ua](https://www.work.ua/resumes/). Each entry represents structured information extracted from a candidate's resume, including education, work experience, skills, languages, disability status, veteran status, driver license presence, and additional profile metadata. |
|
|
|
|
|
The dataset is designed for research and development of: |
|
|
- Resume parsing models |
|
|
- Information extraction systems |
|
|
- Vacancy-candidate matching algorithms |
|
|
- NLP pipelines for Ukrainian-language documents |
|
|
- Data engineering and ML training workflows |
|
|
- Career recommendation systems |
|
|
- Applicant ranking models |
|
|
|
|
|
All personally identifying information has been removed or anonymized. |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
The dataset is split into three files based on the extraction method and data complexity: |
|
|
|
|
|
### File Descriptions |
|
|
|
|
|
| File | Rows | Description | Extraction Method | |
|
|
|------|------|-------------|-------------------| |
|
|
| `resumes_regex.ndjson` | 84,316 | Standard resumes with structured information | Regular expressions | |
|
|
| `resumes_files_gemini.ndjson` | 14,397 | Resumes uploaded as files (PDF, DOC, etc.) | Gemini 2.5 Flash | |
|
|
| `resumes_extended_gemini.ndjson` | 5,253 | Resumes with complex additional information | Gemini 2.5 Flash | |
|
|
|
|
|
**Total**: 104,966 resumes |
|
|
|
|
|
### Data Processing Pipeline |
|
|
|
|
|
1. **Source**: Resumes were scraped from Work.ua website where candidates publicly posted their information |
|
|
2. **Format conversion**: Original HTML format was transformed into Markdown for easier processing |
|
|
3. **Extraction methods**: |
|
|
- **Regex extraction**: Used for standard, well-structured resumes with consistent formatting |
|
|
- **Gemini 2.5 Flash**: Used for file-based uploads and resumes with complex, unstructured additional information that required AI-powered parsing |
|
|
|
|
|
### Schema Overview |
|
|
|
|
|
All three files share the same schema with **21 fields**: |
|
|
|
|
|
```python |
|
|
Schema([ |
|
|
('id', String), |
|
|
('url', String), |
|
|
('title', String), |
|
|
('candidate_name', String), |
|
|
('age', Int64), |
|
|
('city', String), |
|
|
('desired_salary', Int64), |
|
|
('employment_type', String), |
|
|
('work_location_preference', String), |
|
|
('driver_license', Boolean), |
|
|
('creation_date', Datetime(time_unit='us', time_zone=None)), |
|
|
('other_resumes', |
|
|
List(Struct({'title': String, 'url': String, 'resume_id': String, 'description': String}))), |
|
|
('veteran', Boolean), |
|
|
('disability', String), |
|
|
('work_experiences', |
|
|
List(Struct({'position': String, 'start_date': String, 'end_date': String, 'company': String, 'city': String, 'industry': String, 'responsibilities': String}))), |
|
|
('recommendations', |
|
|
List(Struct({'name': String, 'position': String}))), |
|
|
('languages', List(Struct({'language': String, 'level': String}))), |
|
|
('skills', List(String)), |
|
|
('educations', |
|
|
List(Struct({'institution': String, 'faculty': String, 'city': String, 'level': String, 'start_year': Int64, 'end_year': Int64}))), |
|
|
('additional_educations', |
|
|
List(Struct({'institution': String, 'start_year': Int64, 'end_year': Int64}))), |
|
|
('additional_info', String) |
|
|
]) |
|
|
``` |
|
|
|
|
|
### Nested Structure Details |
|
|
|
|
|
#### `work_experiences` |
|
|
- `position`: Job title |
|
|
- `start_date`: Start date |
|
|
- `end_date`: End date |
|
|
- `company`: Company name |
|
|
- `city`: Work location |
|
|
- `industry`: Industry sector |
|
|
- `responsibilities`: Job responsibilities description |
|
|
|
|
|
#### `educations` |
|
|
- `institution`: Educational institution name |
|
|
- `faculty`: Faculty/department name |
|
|
- `city`: Institution location |
|
|
- `level`: Education level (e.g., "Вища", "Середня спеціальна") |
|
|
- `start_year`: Year started |
|
|
- `end_year`: Year graduated |
|
|
|
|
|
#### `additional_educations` |
|
|
- `institution`: Training institution/course name |
|
|
- `start_year`: Year started |
|
|
- `end_year`: Year completed |
|
|
|
|
|
#### `languages` |
|
|
- `language`: Language name (e.g., "Українська", "English") |
|
|
- `level`: Proficiency level (e.g., "вільно", "базовий", "intermediate") |
|
|
|
|
|
#### `recommendations` |
|
|
- `name`: Recommender's name |
|
|
- `position`: Recommender's position/title |
|
|
|
|
|
#### `other_resumes` |
|
|
- `title`: Title of other resume by same candidate |
|
|
- `url`: URL to the other resume |
|
|
- `resume_id`: ID of the other resume |
|
|
- `description`: Brief description |
|
|
|
|
|
## Data Example |
|
|
|
|
|
```json |
|
|
{ |
|
|
"id": "123456", |
|
|
"url": "https://www.work.ua/resumes/123456/", |
|
|
"title": "Будівельник", |
|
|
"candidate_name": "Іван", |
|
|
"age": 32, |
|
|
"city": "Київ", |
|
|
"desired_salary": 25000, |
|
|
"employment_type": "повна", |
|
|
"work_location_preference": "офіс", |
|
|
"driver_license": true, |
|
|
"creation_date": "2025-03-10T12:30:00", |
|
|
"veteran": false, |
|
|
"disability": null, |
|
|
"skills": ["Штукатурка", "Монтаж гіпсокартону"], |
|
|
"languages": [{"language": "Українська", "level": "вільно"}], |
|
|
"work_experiences": [ |
|
|
{ |
|
|
"position": "Будівельник", |
|
|
"start_date": "2020-01", |
|
|
"end_date": "present", |
|
|
"company": "БудКомпанія", |
|
|
"city": "Київ", |
|
|
"industry": "Будівництво", |
|
|
"responsibilities": "Виконання будівельних робіт" |
|
|
} |
|
|
], |
|
|
"educations": [ |
|
|
{ |
|
|
"institution": "КНУБА", |
|
|
"faculty": "Промислове та цивільне будівництво", |
|
|
"city": "Київ", |
|
|
"level": "Вища", |
|
|
"start_year": 2012, |
|
|
"end_year": 2016 |
|
|
} |
|
|
], |
|
|
"additional_educations": [], |
|
|
"recommendations": [], |
|
|
"other_resumes": [], |
|
|
"additional_info": "Готовий до відряджень." |
|
|
} |
|
|
``` |
|
|
|
|
|
## Loading the Dataset |
|
|
|
|
|
### Using Polars |
|
|
|
|
|
```python |
|
|
import polars as pl |
|
|
|
|
|
# Load individual files |
|
|
resumes_regex = pl.read_ndjson("resumes_regex.ndjson") |
|
|
resumes_files = pl.read_ndjson("resumes_files_gemini.ndjson") |
|
|
resumes_extended = pl.read_ndjson("resumes_extended_gemini.ndjson") |
|
|
|
|
|
# Combine all resumes |
|
|
all_resumes = pl.concat([resumes_regex, resumes_files, resumes_extended]) |
|
|
|
|
|
print(f"Total resumes: {len(all_resumes)}") |
|
|
``` |
|
|
|
|
|
### Using Pandas |
|
|
|
|
|
```python |
|
|
import pandas as pd |
|
|
|
|
|
# Load individual files |
|
|
resumes_regex = pd.read_json("resumes_regex.ndjson", lines=True) |
|
|
resumes_files = pd.read_json("resumes_files_gemini.ndjson", lines=True) |
|
|
resumes_extended = pd.read_json("resumes_extended_gemini.ndjson", lines=True) |
|
|
|
|
|
# Combine all resumes |
|
|
all_resumes = pd.concat([resumes_regex, resumes_files, resumes_extended], ignore_index=True) |
|
|
|
|
|
print(f"Total resumes: {len(all_resumes)}") |
|
|
``` |
|
|
|
|
|
## Intended Use |
|
|
|
|
|
- **Resume parsing**: Train and evaluate resume parsing models |
|
|
- **Information extraction**: Develop IE systems for structured data extraction |
|
|
- **Semantic search**: Build search engines for candidate discovery |
|
|
- **Text classification**: Classify resumes by industry, job type, or skill level |
|
|
- **Matching algorithms**: Develop vacancy-candidate matching systems |
|
|
- **NLP research**: Study Ukrainian-language document processing |
|
|
- **Career analytics**: Analyze job market trends and skill requirements |
|
|
- **Recommendation systems**: Build career path and job recommendation engines |
|
|
|
|
|
## Limitations |
|
|
|
|
|
- Some fields may be incomplete due to original document variability |
|
|
- Date formats may vary across entries (especially in `work_experiences`) |
|
|
- The quality of extraction may vary between regex-based and Gemini-based processing |
|
|
- Some `additional_info` fields may contain unstructured or noisy data |
|
|
- Language proficiency levels use non-standardized terms |
|
|
- Salary information may be missing for many entries |
|
|
|
|
|
## Data Quality Notes |
|
|
|
|
|
### Extraction Method Comparison |
|
|
|
|
|
- **Regex extraction** (`resumes_regex.ndjson`): |
|
|
- Higher consistency for well-structured fields |
|
|
- May miss information in non-standard formats |
|
|
|
|
|
- **Gemini extraction** (`resumes_files_gemini.ndjson`, `resumes_extended_gemini.ndjson`): |
|
|
- Better handling of complex, unstructured information |
|
|
- May introduce parsing variations |
|
|
- Can extract information from diverse file formats |
|
|
|
|
|
## Ethical Considerations |
|
|
|
|
|
- All resumes were collected from publicly available pages on Work.ua |
|
|
- Personally identifying information has been removed or anonymized |
|
|
- Contact information (phone numbers, emails) is not included |
|
|
- The dataset should be used for research and development purposes only |
|
|
- Users should respect privacy and not attempt to re-identify individuals |
|
|
|
|
|
## Language |
|
|
|
|
|
The dataset is primarily in **Ukrainian**, with some entries containing information in Russian or other languages. |
|
|
|
|
|
## Acknowledgments |
|
|
|
|
|
- Data source: [Work.ua](https://www.work.ua/) |
|
|
- Extraction tools: Google Gemini 2.5 Flash for AI-powered parsing |
|
|
- Processing framework: Polars for efficient data handling |