Dataset Viewer
Auto-converted to Parquet Duplicate
sample_id
stringlengths
10
10
split
stringclasses
3 values
modality
stringclasses
1 value
scene_type
stringclasses
5 values
sequence_id
stringclasses
5 values
frame_index
int64
0
32
container_id
stringclasses
5 values
container_bounds
stringclasses
3 values
boundary_type
stringclasses
2 values
zone_id
stringlengths
6
6
zone_type
stringlengths
4
12
target_entity_id
stringclasses
5 values
target_visibility
stringclasses
2 values
absence_tag
stringclasses
3 values
evidence_type
stringclasses
9 values
false_absence_target
bool
2 classes
trap_flag
bool
2 classes
label_type
stringclasses
3 values
drift_risk
stringclasses
3 values
comment
stringlengths
13
61
fad_000001
train
video
indoor_room
seq_0001
0
room_01
0 0 1920 1080
hard
zone_A
sofa
cat_01
visible
present
none
false
false
baseline
low
cat on sofa fully visible
fad_000002
train
video
indoor_room
seq_0001
1
room_01
0 0 1920 1080
hard
zone_A
sofa
cat_01
not_visible
still_present
shadow
true
true
false_absence_case
medium
cat drops behind sofa, tail shadow still visible
fad_000003
train
video
indoor_room
seq_0001
2
room_01
0 0 1920 1080
hard
zone_B
door
cat_01
not_visible
left_scene
door_state
false
false
true_exit
medium
door opens and closes as cat leaves room
fad_000004
train
video
factory_line
seq_0002
10
line_01
0 0 2560 1440
hard
zone_C
conveyor
crate_05
visible
present
none
false
false
baseline
low
crate on belt with clear view
fad_000005
train
video
factory_line
seq_0002
11
line_01
0 0 2560 1440
hard
zone_C
conveyor
crate_05
not_visible
still_present
motion_trail
true
true
false_absence_case
high
belt motion and timing imply crate still on line
fad_000006
train
video
factory_line
seq_0002
12
line_01
0 0 2560 1440
hard
zone_D
chute
crate_05
not_visible
left_scene
interaction_trace
false
false
true_exit
high
crate heard dropping into chute bin
fad_000007
train
video
corridor
seq_0003
4
corr_01
0 0 1080 720
soft
zone_E
passage
cart_02
visible
present
none
false
false
baseline
low
cart mid corridor
fad_000008
train
video
corridor
seq_0003
5
corr_01
0 0 1080 720
soft
zone_F
turn_left
cart_02
not_visible
still_present
audio_cue
true
true
false_absence_case
medium
wheel noise continues around corner
fad_000009
train
video
corridor
seq_0003
6
corr_01
0 0 1080 720
soft
zone_G
exit_door
cart_02
not_visible
left_scene
door_state
false
false
true_exit
medium
exit door opens, wheel noise stops
fad_000010
valid
video
sports_pitch
seq_0100
20
pitch_01
0 0 1920 1080
soft
zone_L
left_flank
ball_07
visible
present
none
false
false
baseline
low
ball near touchline
fad_000011
valid
video
sports_pitch
seq_0100
21
pitch_01
0 0 1920 1080
soft
zone_L
left_flank
ball_07
not_visible
still_present
reflection
true
true
false_absence_case
high
ball hidden behind player, reflection on ad board
fad_000012
valid
video
sports_pitch
seq_0100
22
pitch_01
0 0 1920 1080
soft
zone_M
stands
ball_07
not_visible
left_scene
crowd_reaction
false
false
true_exit
high
crowd reacts as ball enters stands
fad_000013
eval
video
warehouse
seq_0201
30
wh_02
0 0 2560 1440
hard
zone_P
robot_lane
robot_11
visible
present
none
false
false
baseline
low
robot in lane
fad_000014
eval
video
warehouse
seq_0201
31
wh_02
0 0 2560 1440
hard
zone_Q
intersection
robot_11
not_visible
still_present
physical_constraint
true
true
false_absence_case
high
layout makes teleport away impossible, robot blocked by racks
fad_000015
eval
video
warehouse
seq_0201
32
wh_02
0 0 2560 1440
hard
zone_R
dock_exit
robot_11
not_visible
left_scene
none
false
false
true_exit
medium
later frame shows empty lane toward dock, robot assumed gone

ClarusC64/false_absence_detection_v01

Dataset summary

This dataset tests whether models treat invisible entities as gone or still present.
In each sequence, a target leaves the camera view.
Some exits are real.
Some are false absences with clear evidence that the target remains in the container.

Goal

  • check if models infer continued presence from indirect cues
  • avoid treating every disappearance as an exit
  • keep spatial grounding under occlusion and clutter

Key signals

  • absence_tag: present, still_present, left_scene
  • evidence_type: shadow, reflection, audio cue, motion trail, interaction trace, door state, physical constraint, none
  • false_absence_target: true when the model should infer β€œstill present”
  • trap_flag: true when the sample is designed to lure models into assuming exit

Columns

  • sample_id – unique id per frame sample
  • split – train, valid, eval
  • modality – video
  • scene_type – indoor_room, factory_line, corridor, sports_pitch, warehouse
  • sequence_id – id for a temporal sequence
  • frame_index – index within the sequence
  • time_gap – not used here (fixed gaps inside raw video)
  • container_id – id of the main container
  • container_bounds – "x_min y_min x_max y_max"
  • boundary_type – hard, soft, porous
  • zone_id – region id inside the container
  • zone_type – sofa, door, conveyor, chute, passage, turn_left, exit_door, left_flank, stands, robot_lane, intersection, dock_exit
  • target_entity_id – tracked entity such as cat_01, crate_05, cart_02, ball_07, robot_11
  • target_visibility – visible, partial, not_visible
  • absence_tag – present, still_present, left_scene
  • evidence_type – none, shadow, motion_trail, interaction_trace, audio_cue, door_state, reflection, crowd_reaction, physical_constraint
  • false_absence_target – true if the model should infer continued presence from evidence
  • trap_flag – true if the scene is designed as a false-absence trap
  • label_type – baseline, false_absence_case, true_exit
  • drift_risk – low, medium, high
  • comment – short human note

Example loading code

from datasets import load_dataset

ds = load_dataset("ClarusC64/false_absence_detection_v01")

row = ds["train"][1]
print(row["target_entity_id"], row["target_visibility"],
      row["absence_tag"], row["evidence_type"], row["false_absence_target"])
Downloads last month
6