Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 5 new columns ({'NodeCount', 'EdgeCount', 'GraphID', 'RootNodeIdx', 'RootNodeId'}) and 7 missing columns ({'OriginalInDegree', 'ScriptType', 'OutDegree', 'InDegree', 'OriginalOutDegree', 'OutHopsFromRoot', 'Address'}).

This happened while the csv dataset builder was generating data using

hf://datasets/B1AAB/Bitcoin-Graph-Sampled-Communities/script_to_script_200k/raw/202509082048222123/metadata.tsv (at revision 249e7205b72b4467f384f890c26b0999a3d09c5c)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              GraphID: int64
              RootNodeId: string
              RootNodeIdx: int64
              NodeCount: int64
              EdgeCount: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 839
              to
              {'Address': Value('string'), 'ScriptType': Value('int64'), 'InDegree': Value('int64'), 'OutDegree': Value('int64'), 'OriginalInDegree': Value('int64'), 'OriginalOutDegree': Value('int64'), 'OutHopsFromRoot': Value('int64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 5 new columns ({'NodeCount', 'EdgeCount', 'GraphID', 'RootNodeIdx', 'RootNodeId'}) and 7 missing columns ({'OriginalInDegree', 'ScriptType', 'OutDegree', 'InDegree', 'OriginalOutDegree', 'OutHopsFromRoot', 'Address'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/B1AAB/Bitcoin-Graph-Sampled-Communities/script_to_script_200k/raw/202509082048222123/metadata.tsv (at revision 249e7205b72b4467f384f890c26b0999a3d09c5c)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Address
string
ScriptType
int64
InDegree
int64
OutDegree
int64
OriginalInDegree
int64
OriginalOutDegree
int64
OutHopsFromRoot
int64
12q95Yvu6ef5Bgr45mjyBHrVhuR7CyxfXd
1
1
1
561
172
0
1PCmnvXPsarTrWQWKpjV9a2BGLzSGTCoos
1
1
0
1
6
3
127S9djkR2UHHwHKr3u8FLoMDXVKtwsRFL
1
1
0
429
1,834
3
18Zcyxqna6h7Z7bRjhKvGpr8HSfieQWXqj
1
1
10
9,021,131
15,754
2
19UA9qSfd5DrFWZXLtdMT4Rus9M5VM53dx
1
1
0
9,219
12,340
3
177fpGmiFXRsY7UeCSoRAsYe2vDmJuYVqu
1
1
0
8,853
8,812
3
1H9DUnxe9TgB6bdyPH6eSzdw8utwNp1kLa
1
1
0
3,750
4
1
16gbF8fTUeFSMK2JTLwzNK5jzRgEx5K92A
1
1
0
47
144
3
13fW4oyBosTQZkEALDhK5RNmtmZSe7uPe6
1
1
0
19
6
3
1CkmA25Dq5ZnoqM4W1SG6BrkWfo8cYfMZ2
1
1
0
2,374
4
1
1DE1D7c1jwBSMk9SnD47sQkYBeyG3vpVBD
1
1
3
2
6
2
12EnrBWJPg3FFGDzvHnAmiNDxg1MFoHjkn
1
1
0
237
334
3
12NArz3Aju74tZnfiytt3ZjtCn9LAcHDhw
1
1
0
8
370
3
13zHEiEAX9JaPCMp7hbtKZv78Yzw6ZhPLJ
1
1
2
110
32
1
1DQqpXSQypjk1Lc5jSvUEtW7KSdTC2KtVF
1
1
0
2
6
3
155fzsEBHy9Ri2bMQ8uuuR3tv1YzcDywd4
1
1
1
21,181,446
662
2
16dYJ31tZUvrpGMg7LP7zMXHkErvfx6Tsv
1
1
0
16
66
3
1DFEVhNDctAac8ar4dwuz6gRPUvMUiUaBD
1
1
0
7
20
3
14rkdHrh1E3L34v9vTevoJ5hGfLmM2eLTX
1
1
0
1,451
2,882
3
1DRpHeT3wQLPQhFzDmAhf7WB6Ypbs3EEZG
1
1
2
1
4
1
1Mh2MPPqfoxRcWt2M7nr66EFn1UHxUkMap
1
1
0
1
6
3
1KFHE7w8BhaENAswwryaoccDb6qcT6DbYY
1
1
10
282,138,435
3,421,428
2
1D3DKwsfphZddmbsQZwA8uYXDxSksxCf2C
1
1
0
1
8
3
3NA8hsjfdgVkmmVS9moHmkZsVCoLxUkvvv
2
1
8
10,915,607
2,770
0
1ABu1at4nq9hYQumkwVPcsZvaVPYZZCnFP
1
1
0
1
6
3
12Shq2AQMgHBHVffbbd9DJ9mVv9grz1o95
1
1
0
360
1,970
3
1ChpsS9qX87AjTqbJDnx6HJNT18ELBdqM4
1
1
0
1,419
0
1
1B1oYndjbpGwMVBVfNjZ1PUy6PUKaQawti
1
1
0
1
6
3
12FaUWDHFn4vTimdmomxBPi87fvaFL1aWw
1
1
0
1
6
3
1A3Z3B9QtYcA9ZMtLDxBYn6iSstDscdsqB
1
1
0
2,374
0
1
1ALhitdxxigF5GVXGSwS6bUZeMCiNmnabk
1
1
6
42
72
2
12PN1znGB4Fk24pa45cbDf1uAGPpRywGBM
1
1
0
42
1,070
3
14M5AsHzRQP4AznphM2v3dDgEFwfPGbEsR
1
1
0
8
6
3
1FYhWJRR1fphMXH9jzpPvgFQ4sEx4Wfgzg
1
0
3
3
6
0
12qditaGoBronpfd1iFSAneZmBs4GrkFuM
1
1
0
48
30
3
1LjYX8JCSSCgzUdEHVZi4qcdxzn7YEkr1M
1
1
0
408,784
185,976
3
1MG5fPzWBwuKEkcLrKPocRgvymmx2qSkHa
1
1
0
45
6
0
17ThTJxhKZQvoBM2PBVLRmr2ozcjRHKJa2
1
1
0
76
350
3
14vLPArARG7D6agPkoJ1BJbMoB1EvCpeM9
1
1
0
1
6
3
122QqT1YVpbpwnWMoXgbLvhPp3W3JDiHfB
1
1
0
31
22
3
1M3iEmXs6KJQszh4hGnjmvT8mUFmvu34eJ
1
1
0
2,374
0
1
1E4nqRyFxE5dVZCL83YR2y68tJqJurYhcR
1
1
1
1,539,343
1,728
1
11Qzze4DHYwZQKMWRLcWsucRrXtZBVUNc
1
1
0
1
0
3
1N8QiBLSV2u7SEq9JgoMrrMsnXjKxmrkiv
1
1
0
1
6
3
13YPQyANk8pVMDpAWyBrp68kVJoNsFNWZZ
1
1
0
3,896
0
1
17UHdESC3gTRaVEqzJBB8Kb2CYJoUn2UXd
1
1
0
1
6
3
12UxamrSnuCPmMdVwLNe7yQP4VK56W5wBt
1
1
0
60
28
3
12WiVxjL9qGw53SRH6wqvvScv4WztQ7Z7n
1
1
0
1
0
3
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

Overview

EBA interfaces with the Bitcoin network to create a graph of the full history of on-chain transactions, which includes the complete trading details of >8.72B BTC. This temporal heterogeneous graph consists of >2.4B nodes and >39.7B time-stamped edges spanning more than a decade, making it an ideal resource for developing models on Bitcoin and a large-scale benchmark for graph neural networks.

Please refer to the following paper for details:

Jalili, Vahid. "The Temporal Graph of Bitcoin Transactions." The Thirty-ninth Annual Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

We share the complete ETL pipeline and all the data it generates. To simplify working with the pipeline and its resources, we have split them into separate repositories:

Block Metadata

This dataset provides per-block summary statistics for the Bitcoin blockchain, covering all blocks up to height 863 000. The statistics are derived from four sources: parsed from block headers, ETL logs, summarized from block content, and generated from the chain in a post-processing step.

The goal of these stats is to provide block-level context; either used as an independent resource (e.g., to forecast trade volume) or to complement other datasets. For instance, they can be combined with the Bitcoin Graph or off-chain market indicators (like high, low, open, and close prices) to enhance forecasting models.

Dataset and features documentation

Downloads last month
1,431