phi3-nl2bash-lora
This repository contains LoRA adapter weights fine-tuned on the
jiacheng-ye/nl2bash
dataset to convert natural language instructions into Linux bash commands.
โ ๏ธ This repository contains LoRA adapters only, not the base model.
You must load these adapters on top ofmicrosoft/phi-3-mini-128k-instruct.
Intended use
The model is trained to output only valid bash commands, with no explanations.
Example
Input:
List all .txt files recursively and count lines
Output:
find . -name "*.txt" | xargs wc
Training summary
- Base model: microsoft/phi-3-mini-128k-instruct
- Fine-tuning method: LoRA (PEFT)
- Trainer: TRL SFTTrainer
- Dataset: jiacheng-ye/nl2bash
- Output format: Bash commands only
Loading example
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
base_model = "microsoft/phi-3-mini-128k-instruct"
lora_model = "ayertiam/phi3-nl2bash-lora"
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
model = PeftModel.from_pretrained(model, lora_model)
model.eval()
Notes
- These adapters are model-specific and only compatible with
microsoft/phi-3-mini-128k-instruct. - For Ollama or GGUF usage, the LoRA must be merged into the base model and converted before inference.
- Downloads last month
- 10