Vetta Granite LoRA Adapters v3
This repository contains the LoRA adapters for the Vetta AI interviewer model, fine-tuned on Granite 3.0 2B Instruct.
Usage
from unsloth import FastLanguageModel
from transformers import AutoTokenizer
# Load base model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="ibm-granite/granite-3.0-2b-instruct",
max_seq_length=2048,
load_in_4bit=True,
)
# Load LoRA adapters
model = FastLanguageModel.get_peft_model(
model,
lora_path="asifdotpy/vetta-granite-2b-lora-v3",
r=16,
lora_alpha=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
)
# Enable inference
FastLanguageModel.for_inference(model)
# Generate
inputs = tokenizer("Begin a technical interview...", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Training Details
- Base Model: ibm-granite/granite-3.0-2b-instruct
- Training Method: LoRA fine-tuning
- Dataset: Custom interview conversation dataset
- Training Steps: 450
- Final Loss: 0.2422
Intended Use
This model is designed to conduct professional AI-powered interviews, providing empathetic and technically accurate responses.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support