narugo1992's picture
Update README.md
ed17289 verified
---
tags:
- image-classification
- timm
- transformers
- animetimm
- dghs-imgutils
library_name: timm
license: gpl-3.0
datasets:
- animetimm/danbooru-wdtagger-v4a-w640-ws-full
base_model:
- timm/swinv2_base_window8_256.ms_in1k
---
# Anime Tagger swinv2_base_window8_256.dbv4a-full
## Model Details
- **Model Type:** Multilabel Image classification / feature backbone
- **Model Stats:**
- Params: 87.6M
- FLOPs / MACs: 121.6G / 60.7G
- Image size: train = 448 x 448, test = 448 x 448
- **Dataset:** [animetimm/danbooru-wdtagger-v4a-w640-ws-full](https://huggingface.co/datasets/animetimm/danbooru-wdtagger-v4a-w640-ws-full)
- Tags Count: 650
- Artist (#1) Tags Count: 650
## Results
| # | [email protected] (F1/MCC/P/R) | [email protected] (F1/MCC/P/R) | Macro@Best (F1/P/R) |
|:----------:|:-----------------------------:|:-----------------------------:|:---------------------:|
| Validation | 0.889 / 0.895 / 0.930 / 0.873 | 0.887 / 0.886 / 0.894 / 0.879 | --- |
| Test | 0.891 / 0.897 / 0.932 / 0.875 | 0.890 / 0.890 / 0.896 / 0.883 | 0.929 / 0.961 / 0.903 |
* `Macro/[email protected]` means the metrics on the threshold 0.40.
* `Macro@Best` means the mean metrics on the tag-level thresholds on each tags, which should have the best F1 scores.
## Thresholds
| Category | Name | Alpha | Threshold | Micro@Thr (F1/P/R) | [email protected] (F1/P/R) | Macro@Best (F1/P/R) |
|:----------:|:------:|:-------:|:-----------:|:---------------------:|:---------------------:|:---------------------:|
| 1 | artist | 1 | 0.67 | 0.894 / 0.925 / 0.865 | 0.891 / 0.932 / 0.875 | 0.929 / 0.961 / 0.903 |
* `Micro@Thr` means the metrics on the category-level suggested thresholds, which are listed in the table above.
* `[email protected]` means the metrics on the threshold 0.40.
* `Macro@Best` means the metrics on the tag-level thresholds on each tags, which should have the best F1 scores.
For tag-level thresholds, you can find them in [selected_tags.csv](https://huggingface.co/animetimm/swinv2_base_window8_256.dbv4a-full/resolve/main/selected_tags.csv).
## How to Use
We provided a sample image for our code samples, you can find it [here](https://huggingface.co/animetimm/swinv2_base_window8_256.dbv4a-full/blob/main/sample.webp).
### Use TIMM And Torch
Install [dghs-imgutils](https://github.com/deepghs/imgutils), [timm](https://github.com/huggingface/pytorch-image-models) and other necessary requirements with the following command
```shell
pip install 'dghs-imgutils>=0.17.0' torch huggingface_hub timm pillow pandas
```
After that you can load this model with timm library, and use it for train, validation and test, with the following code
```python
import json
import pandas as pd
import torch
from huggingface_hub import hf_hub_download
from imgutils.data import load_image
from imgutils.preprocess import create_torchvision_transforms
from timm import create_model
repo_id = 'animetimm/swinv2_base_window8_256.dbv4a-full'
model = create_model(f'hf-hub:{repo_id}', pretrained=True)
model.eval()
with open(hf_hub_download(repo_id=repo_id, repo_type='model', filename='preprocess.json'), 'r') as f:
preprocessor = create_torchvision_transforms(json.load(f)['test'])
# Compose(
# PadToSize(size=(512, 512), interpolation=bilinear, background_color=white)
# Resize(size=448, interpolation=bicubic, max_size=None, antialias=True)
# CenterCrop(size=[448, 448])
# MaybeToTensor()
# Normalize(mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
# )
image = load_image('https://huggingface.co/animetimm/swinv2_base_window8_256.dbv4a-full/resolve/main/sample.webp')
input_ = preprocessor(image).unsqueeze(0)
# input_, shape: torch.Size([1, 3, 448, 448]), dtype: torch.float32
with torch.no_grad():
output = model(input_)
prediction = torch.sigmoid(output)[0]
# output, shape: torch.Size([1, 650]), dtype: torch.float32
# prediction, shape: torch.Size([650]), dtype: torch.float32
df_tags = pd.read_csv(
hf_hub_download(repo_id=repo_id, repo_type='model', filename='selected_tags.csv'),
keep_default_na=False
)
tags = df_tags['name']
mask = prediction.numpy() >= df_tags['best_threshold']
print(dict(zip(tags[mask].tolist(), prediction[mask].tolist())))
# {'maru_(marg0613)': 0.9999892711639404}
```
### Use ONNX Model For Inference
Install [dghs-imgutils](https://github.com/deepghs/imgutils) with the following command
```shell
pip install 'dghs-imgutils>=0.17.0'
```
Use `multilabel_timm_predict` function with the following code
```python
from imgutils.generic import multilabel_timm_predict
artist = multilabel_timm_predict(
'https://huggingface.co/animetimm/swinv2_base_window8_256.dbv4a-full/resolve/main/sample.webp',
repo_id='animetimm/swinv2_base_window8_256.dbv4a-full',
fmt='artist',
)
print(artist)
# {'maru_(marg0613)': 0.9999892711639404}
```
For further information, see [documentation of function multilabel_timm_predict](https://dghs-imgutils.deepghs.org/main/api_doc/generic/multilabel_timm.html#multilabel-timm-predict).