bert-base-uncased-ALHD_balanced_10percent
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3406
- Accuracy: 0.8661
- F1: 0.8649
- Precision: 0.8793
- Recall: 0.8661
- F1 Class 0: 0.8522
- F1 Class 1: 0.8775
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Class 0 | F1 Class 1 |
|---|---|---|---|---|---|---|---|---|---|
| 0.5991 | 1.0 | 380 | 0.4570 | 0.8046 | 0.7996 | 0.8388 | 0.8046 | 0.7677 | 0.8314 |
| 0.3558 | 2.0 | 760 | 0.3539 | 0.8633 | 0.8624 | 0.8740 | 0.8633 | 0.8508 | 0.8740 |
| 0.2944 | 3.0 | 1140 | 0.4556 | 0.8416 | 0.8388 | 0.8673 | 0.8416 | 0.8175 | 0.8601 |
| 0.2728 | 4.0 | 1520 | 0.3430 | 0.8707 | 0.8697 | 0.8831 | 0.8707 | 0.8580 | 0.8814 |
| 0.2558 | 5.0 | 1900 | 0.4063 | 0.8633 | 0.8620 | 0.8785 | 0.8633 | 0.8481 | 0.8758 |
| 0.2431 | 6.0 | 2280 | 0.3873 | 0.8698 | 0.8683 | 0.8867 | 0.8698 | 0.8545 | 0.8821 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Model tree for amitca71/bert-base-uncased-ALHD_balanced_10percent
Base model
google-bert/bert-base-uncased