2D Matryoshka Sentence Embeddings
Paper
•
2402.14776
•
Published
•
6
This is a sentence-transformers model finetuned from UBC-NLP/ARBERTv2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'لماذا رائحة الغسيل بعد الغسيل',
'كيفية التخلص من الرائحة: إذا تم اكتشافها على الفور ، فعادة ما يكون غسل الملابس مرة أخرى هو كل ما يلزم لإزالة الروائح الكريهة. إذا لم ينجح ذلك وما زلت تواجه مشاكل ، جرب إحدى الطرق التالية: اغسل مرة أخرى ولكن هذه المرة أضف كوبًا واحدًا من الخل إلى الحمولة (جنبًا إلى جنب مع منظف الغسيل).',
'حافظ على ملابسك منتعشة وجافة بالمجفف الكهربائي من سيرز. عندما يدور يوم الغسيل ، يمكنك الاعتماد على الأداء الفعال للمجفف الكهربائي. يحتوي سيرز على مجففات تناسب ديكور أي غرفة غسيل. من الفولاذ المقاوم للصدأ إلى تشطيبات الأونيكس ، يسهل تنسيق هذا الجهاز الأنيق مع الغسالة التي تختارها.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.016 | 250 | 2.4152 | - |
| 0.032 | 500 | 1.24 | - |
| 0.048 | 750 | 1.0238 | - |
| 0.064 | 1000 | 0.929 | - |
| 0.08 | 1250 | 0.8268 | - |
| 0.096 | 1500 | 0.8117 | - |
| 0.112 | 1750 | 0.7486 | - |
| 0.128 | 2000 | 0.7053 | - |
| 0.144 | 2250 | 0.7131 | - |
| 0.16 | 2500 | 0.7003 | - |
| 0.176 | 2750 | 0.6735 | - |
| 0.192 | 3000 | 0.6548 | - |
| 0.208 | 3250 | 0.63 | - |
| 0.224 | 3500 | 0.6037 | - |
| 0.24 | 3750 | 0.6149 | - |
| 0.256 | 4000 | 0.5545 | - |
| 0.272 | 4250 | 0.5385 | - |
| 0.288 | 4500 | 0.5413 | - |
| 0.304 | 4750 | 0.5217 | - |
| 0.32 | 5000 | 0.4884 | 0.4664 |
| 0.336 | 5250 | 0.5052 | - |
| 0.352 | 5500 | 0.5239 | - |
| 0.368 | 5750 | 0.5145 | - |
| 0.384 | 6000 | 0.4707 | - |
| 0.4 | 6250 | 0.4514 | - |
| 0.416 | 6500 | 0.42 | - |
| 0.432 | 6750 | 0.4747 | - |
| 0.448 | 7000 | 0.4798 | - |
| 0.464 | 7250 | 0.4443 | - |
| 0.48 | 7500 | 0.4402 | - |
| 0.496 | 7750 | 0.411 | - |
| 0.512 | 8000 | 0.4546 | - |
| 0.528 | 8250 | 0.4428 | - |
| 0.544 | 8500 | 0.4293 | - |
| 0.56 | 8750 | 0.4052 | - |
| 0.576 | 9000 | 0.3993 | - |
| 0.592 | 9250 | 0.3971 | - |
| 0.608 | 9500 | 0.4246 | - |
| 0.624 | 9750 | 0.3995 | - |
| 0.64 | 10000 | 0.4087 | 0.3428 |
| 0.656 | 10250 | 0.3955 | - |
| 0.672 | 10500 | 0.3878 | - |
| 0.688 | 10750 | 0.3896 | - |
| 0.704 | 11000 | 0.3535 | - |
| 0.72 | 11250 | 0.3809 | - |
| 0.736 | 11500 | 0.3502 | - |
| 0.752 | 11750 | 0.3558 | - |
| 0.768 | 12000 | 0.3626 | - |
| 0.784 | 12250 | 0.3607 | - |
| 0.8 | 12500 | 0.3775 | - |
| 0.816 | 12750 | 0.3458 | - |
| 0.832 | 13000 | 0.3498 | - |
| 0.848 | 13250 | 0.3618 | - |
| 0.864 | 13500 | 0.3617 | - |
| 0.88 | 13750 | 0.3529 | - |
| 0.896 | 14000 | 0.3285 | - |
| 0.912 | 14250 | 0.3379 | - |
| 0.928 | 14500 | 0.336 | - |
| 0.944 | 14750 | 0.3402 | - |
| 0.96 | 15000 | 0.3391 | 0.2951 |
| 0.976 | 15250 | 0.3663 | - |
| 0.992 | 15500 | 0.3461 | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}