vit_wlasl_100__signer_20ep_coR

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2249
  • Accuracy: 0.6893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3600
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
18.6766 0.05 180 4.5404 0.0444
16.8426 1.0499 360 3.8874 0.1598
12.3673 2.0499 540 2.9966 0.3432
7.8621 3.0501 721 2.4038 0.4852
4.8313 4.05 901 2.0418 0.5592
2.7708 5.0499 1081 1.8076 0.5740
1.5035 6.0499 1261 1.5676 0.6243
0.8306 7.0501 1442 1.4917 0.6006
0.4151 8.05 1622 1.4064 0.6420
0.2608 9.0499 1802 1.2911 0.6893
0.1502 10.0499 1982 1.2645 0.6746
0.0901 11.0501 2163 1.2336 0.6805
0.0787 12.05 2343 1.2576 0.6834
0.0635 13.0499 2523 1.2286 0.6834
0.0597 14.0499 2703 1.2249 0.6893

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
80
Safetensors
Model size
88.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Shawon16/vit_wlasl_100__signer_20ep_coR

Finetuned
(75)
this model

Evaluation results