yassine-mhirsi's picture
Update README.md
eeaa257 verified
metadata
language: en
license: mit
tags:
  - yolov8
  - object-detection
  - license-plate
  - arabic-text
  - tunisia
  - computer-vision
library_name: ultralytics
pipeline_tag: object-detection
datasets:
  - Safe-Drive-TN/tunis-word-tunisian-license-plate

Tunisian License Plate - Arabic Text Detection (YOLOv8s)

This model detects the Arabic word "تونس" (Tunis) in Tunisian license plates using YOLOv8s.

Model Description

  • Model Type: YOLOv8s (Small)
  • Task: Object Detection
  • Classes: 1 class - "tunis" (Arabic text region)
  • Purpose: Detecting and localizing the word "تونس" in Tunisian license plates for OCR preprocessing

Use Case

This model is designed to be used as a preprocessing step for license plate OCR:

  1. Detect the Arabic text "تونس" region
  2. Mask or crop this region
  3. Apply OCR on the remaining numeric characters for better accuracy

Training Details

  • Base Model: YOLOv8s pretrained weights
  • Image Size: 512x512
  • Framework: Ultralytics YOLOv8
  • Training Dataset: Tunisian license plate images

Usage

from ultralytics import YOLO

# Load the model
model = YOLO("yassine-mhirsi/tunis-word-detection-yolov8s")

# Run inference
results = model.predict("path/to/license_plate.jpg", conf=0.5)

# Process results
for result in results:
    boxes = result.boxes
    for box in boxes:
        print(f"Confidence: {box.conf[0]:.2f}")
        print(f"Bounding Box: {box.xyxy[0]}")

Model Files

  • best.pt - Best weights from training
  • last.pt - Last checkpoint
  • Training metrics and visualizations included

Example

Tunisian License Plate

Citation

If you use this model, please cite:

@misc{tunis-word-detection-yolov8s,
  authors = {Yassine Mhirsi,Malek Messaoudi},
  title = {Tunisian License Plate Arabic Text Detection},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/Safe-Drive-TN/tunis-word-detection-yolov8s/}}
}

License

MIT License