TrOCR Fine-tuned for Mathematical Expressions
This model is a fine-tuned version of fhswf/TrOCR_Math_handwritten for recognizing handwritten mathematical expressions and converting them to LaTeX format.
Model Description
- Architecture: VisionEncoderDecoder (ViT + Transformer)
- Base Model: fhswf/TrOCR_Math_handwritten
- Training Data: Custom mathematical expressions dataset
- Purpose: Convert images of mathematical equations to LaTeX code
Intended Uses
- Digitizing handwritten math equations
- Educational applications
- Scientific document processing
- Math notation recognition
Usage
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
processor = TrOCRProcessor.from_pretrained("Ntsako12/TrOCR_Tuned")
model = VisionEncoderDecoderModel.from_pretrained("Ntsako12/TrOCR_Tuned")
image = Image.open("math_equation.jpg").convert("RGB")
pixel_values = processor(image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text) # Output: rac{1}{2} + rac{3}{4}
Training
Epochs: 10
Batch Size: 16
Learning Rate: 5e-5
Framework: PyTorch with Hugging Face Transformers
Limitations
Performance may vary with different handwriting styles
Complex nested expressions might be challenging
Requires clear, well-written mathematical expressions
- Downloads last month
- 13