Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Mohamed-Gamil/multilingual-e5-small-JapaneseTeacher")
# Run inference
sentences = [
"page_content='Do native speakers correctly use counters every time? The answer is no. We often make mistakes or intentionally use wrong ones for the sake of simplicity. \nCounter: 膳 \n<!-- 🖼️❌ Image not available. Please use `PdfPipelineOptions(generate_picture_images=True)` --> \nFor example, when you count chopsticks, the counter: 膳 ぜん is right. However, a lot of people count chopsticks with 本 ほん . Although it's not right, 本 ほん is applicable because of the form of chopsticks. What we wanted to say here is that you **don't need be a perfectionist** . Of course, it's better that you can use every counter correctly, but actually, it is a fact that most native speakers can't do it themselves.' metadata={'h3': 'Practical Usages in Reality'}",
'Are there situations where using a wrong counter is acceptable?',
'Can you give an example of a casual sentence versus a polite one in Japanese?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
ir_evaluatorInformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6637 |
| cosine_accuracy@3 | 0.8561 |
| cosine_accuracy@5 | 0.9103 |
| cosine_accuracy@10 | 0.9475 |
| cosine_precision@1 | 0.6637 |
| cosine_precision@3 | 0.2854 |
| cosine_precision@5 | 0.1822 |
| cosine_precision@10 | 0.0949 |
| cosine_recall@1 | 0.6633 |
| cosine_recall@3 | 0.8557 |
| cosine_recall@5 | 0.9099 |
| cosine_recall@10 | 0.9475 |
| cosine_ndcg@10 | 0.8122 |
| cosine_mrr@10 | 0.7681 |
| cosine_map@100 | 0.7702 |
positive and anchor| positive | anchor | |
|---|---|---|
| type | string | string |
| details |
|
|
| positive | anchor |
|---|---|
page_content=' |
私わたしが困こまっていたとき、 |
page_content=' |
私わたしが困こまっていたとき、 |
page_content=' |
私わたしが困こまっていたとき、 |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: epochper_device_train_batch_size: 16gradient_accumulation_steps: 32learning_rate: 2e-05num_train_epochs: 20lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truedataloader_num_workers: 2load_best_model_at_end: Trueoptim: adamw_torch_fuseddataloader_pin_memory: Falsegradient_checkpointing: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 32eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 20max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 2dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Falsedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | ir_evaluator_cosine_ndcg@10 |
|---|---|---|---|
| -1 | -1 | - | 0.5500 |
| 1.0 | 10 | 67.2044 | 0.6343 |
| 2.0 | 20 | 49.2443 | 0.6757 |
| 3.0 | 30 | 21.3377 | 0.7179 |
| 4.0 | 40 | 8.6437 | 0.7687 |
| 5.0 | 50 | 5.8509 | 0.7862 |
| 6.0 | 60 | 5.0683 | 0.7905 |
| 7.0 | 70 | 3.6658 | 0.8006 |
| 8.0 | 80 | 3.5062 | 0.8011 |
| 9.0 | 90 | 3.0544 | 0.8055 |
| 10.0 | 100 | 2.7832 | 0.8060 |
| 11.0 | 110 | 2.743 | 0.8090 |
| 12.0 | 120 | 2.3785 | 0.8056 |
| 13.0 | 130 | 2.3046 | 0.8069 |
| 14.0 | 140 | 2.4136 | 0.8119 |
| 15.0 | 150 | 2.3528 | 0.8119 |
| 16.0 | 160 | 2.032 | 0.8115 |
| 17.0 | 170 | 2.1875 | 0.8115 |
| 18.0 | 180 | 2.0299 | 0.8124 |
| 19.0 | 190 | 2.1747 | 0.8126 |
| 20.0 | 200 | 2.1729 | 0.8122 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
intfloat/multilingual-e5-small