Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("George2002/sledopyt_embedder")
# Run inference
sentences = [
'query: Какие шаги нужно предпринять после отрицательного решения по запросу на открытие счета?',
'passage: Выбрать возраст ребенка\n\nребенку от 14 до 18 лет\n\nЕсли представитель ребенку от 14 до 18 лет является приемным родителем\n\nЗапросите следующие документы удостоверяющую личность или нотариально заверенную копию и один из документов, подтверждающие полномочия:\n\nДоговор о приемной семье\n\nДокумент органов опеки и попечительства \n\nПроставить галочку "Документы предъявлены" и нажать кнопку "Продолжить"',
'q2p',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor, positive, and task_type| anchor | positive | task_type | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | task_type |
|---|---|---|
query: Какие последствия, если родитель отключит показ карты ребенка в приложении? |
passage: Существуют следующие возможности: |
q2p |
query: С какого момента ФУ начинают получать обслуживание в СБОЛ через ФП 'Представители и правопреемники'? |
passage: Описание функционала во вложении ниже. |
q2p |
query: Что отобразится в МП СБОЛ у ребенка после начала процесса закрытия карты? |
passage: Заявление-анкета |
q2p |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
anchor, positive, and task_type| anchor | positive | task_type | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | task_type |
|---|---|---|
query: Какая информация нужна работнику ВСП о Детской СберКарте? |
passage: Возможные ошибки: |
q2p |
query: Какое условие позволяет клиенту-банкрот распорядиться наследством в стадии "Реструктуризация долгов"? |
passage: В случае, если Клиент, обратившийся за получением наследства при идентификации обнаружен в Стоп-Листе банкротов: |
q2p |
query: Какие бумаги нужны, когда опекун ребенка выступает в роли представителя? |
passage: Право распоряжения средствами на счете согласно требованиям ГК РФ (п.2 ст. 26, п.1 ст.37) |
q2p |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 64learning_rate: 1e-05weight_decay: 0.01num_train_epochs: 5warmup_ratio: 0.1load_best_model_at_end: Truepush_to_hub: Truehub_model_id: George2002/sledopyt_embedderhub_strategy: endoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: George2002/sledopyt_embedderhub_strategy: endhub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.8333 | 10 | 3.801 | - |
| 1.6667 | 20 | 3.4564 | - |
| 2.0833 | 25 | - | 1.7632 |
| 2.5 | 30 | 3.2725 | - |
| 3.3333 | 40 | 3.152 | - |
| 4.1667 | 50 | 3.0422 | 1.7122 |
| 5.0 | 60 | 2.9745 | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
intfloat/multilingual-e5-large