SetFit with TurkuNLP/bert-base-finnish-cased-v1
This is a SetFit model that can be used for Text Classification. This SetFit model uses TurkuNLP/bert-base-finnish-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| 0 |
- 'Etunimi Sukunimi miten luulet tilanteen parantuneen kun sairaala- ja tehohoito potilaiden määrä on vain kasvanut silloisesta?\nOlet niin totaalisen puusilmäinen ja hallirusvihan vallassa, että tätä on turha jatkaa pitemmälle. Pysy terveenä ja rauhallista joulua!'
- '"Hylkiö" unionin toimesta johon ei kuulu.'
- 'Etunimi Sukunimi en nyt varsinaisesti pelkästään tuota aihetta tarkoittanutkaan. Sekin on kuitenkin vähintään kyseenalaista, koska kyseessä ei ole valmis tuote, vaan hätämyyntiluvalla käytössä oleva ruiske, ja sen seurauksena on niinikään perusoikeudellinen terveydenhuollon taso turvaamattomalla tasolla.'
|
| 1 |
- 'Etunimi Sukunimi perustuslakia ei ole rikottu niissä asioissa mitä convoypellet väitti, kaikki mitä kaverit väittää ei ole totta .'
- 'Mikään ei ole niin varmaa kuin epävarma. KUKAAN ei millään voi tietää mitä tapahtuu koronan tai ylipäätään minkään suhteen. Joka muuta väittää on typerys...'
- 'Sukunimi kaupunginvaltuutettu Ei tietenkään. Hyvinhän me voimme itsekin tuottaa maakaasua ja raakaöljyä. Eikös?'
|
Evaluation
Metrics
| Label |
Metric |
| accuracy |
0.7973 |
| F1 |
0.584 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("Finnish-actions/SetFit-FinBERT1-Avg-challenge")
preds = model("Kohta on lisää lapsia sairaalassa koronan vuoksi ☹")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
1 |
19.9323 |
213 |
| Label |
Training Sample Count |
| 0 |
754 |
| 1 |
88 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 6
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: epoch
- eval_max_steps: -1
- load_best_model_at_end: False
Framework Versions
- Python: 3.11.9
- SetFit: 1.1.3
- Sentence Transformers: 3.2.0
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu124
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{paakki-implicit-indirect,
doi = {https://doi.org/10.3384/nejlt.2000-1533.2025.5980},
url = {https://nejlt.ep.liu.se/article/view/5980},
author = {Paakki, Henna and Toivanen, Pihla and Kajava, Kaisla},
title = {Implicit and Indirect: Detecting Face-threatening and Paired Actions in Asynchronous Online Conversations},
publisher = {Northern European Journal of Language Technology (NEJLT)},
volume= {11},
number= {1},
year = {2025}
}