Airliner Latent Classifier (Stable Diffusion v1.4)

Latent-space binary classifier trained on Stable Diffusion v1.4 VAE latents (shape 4ร—64ร—64) with a simple MLP head and a timestep embedding (from the DDIM scheduler).
Intended for concept probing and classifier guidance in diffusion workflows.

  • Concept: airliner
  • Input: latent tensor z โˆˆ โ„^{4ร—64ร—64} and a diffusion timestep t
  • Output: logit/probability that z contains the concept at timestep t
  • Author/Org: DiffusionConceptErasure
  • Date: 2025-11-05

Usage (PyTorch)

import torch
from diffusers import DDIMScheduler

# ---- model definition (must match training) ----
import torch.nn as nn
class FixedTimestepEncoding(nn.Module):
    def __init__(self, scheduler):
        super().__init__()
        self.register_buffer("alphas_cumprod", scheduler.alphas_cumprod)
    def forward(self, t):
        alpha_bar = self.alphas_cumprod[t]
        return torch.stack([alpha_bar.sqrt(), (1 - alpha_bar).sqrt()], dim=-1)

class LatentClassifierT(nn.Module):
    def __init__(self, latent_shape=(4, 64, 64), scheduler=None):
        super().__init__()
        c, h, w = latent_shape
        flat_dim = c * h * w
        self.t_embed = FixedTimestepEncoding(scheduler)
        self.fc_t = nn.Linear(2, 1024)
        self.fc_x = nn.Linear(flat_dim, 1024)
        self.net = nn.Sequential(
            nn.SiLU(),
            nn.Dropout(0.3),
            nn.Linear(1024, 512),
            nn.SiLU(),
            nn.Dropout(0.3),
            nn.Linear(512, 1)
        )
    def forward(self, z, t):
        z_flat = z.flatten(start_dim=1)
        return self.net(self.fc_x(z_flat) + self.fc_t(self.t_embed(t)))

# ---- load weights ----
repo_id = "DiffusionConceptErasure/latent-classifier-airliner"
ckpt_name = "airliner.pt"

scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
model = LatentClassifierT(scheduler=scheduler)

state = torch.hub.load_state_dict_from_url(
    f"https://huggingface.co/{repo_id}/resolve/main/{ckpt_name}",
    map_location="cpu"
)
model.load_state_dict(state["model_state_dict"] if "model_state_dict" in state else state)
model.eval()

# Example inference:
z = torch.randn(1, 4, 64, 64)           # latent
t = torch.randint(0, scheduler.config.num_train_timesteps, (1,))  # timestep
with torch.no_grad():
    logit = model(z, t)                 # shape [1, 1]
    prob = torch.sigmoid(logit)
print(prob.item())

Notes

  • Trained with DDIM power-law timestep sampling biased to noisier latents.
  • For classifier guidance, average logits across a few noisy t samples if desired.
  • Expectation: highest discriminability at moderate noise; extreme noise reduces signal.

Citation

If you use this, please cite:

@inproceedings{lu2025concepts,
  title={When Are Concepts Erased From Diffusion Models?},
  author={Kevin Lu and Nicky Kriplani and Rohit Gandikota and Minh Pham and David Bau and Chinmay Hegde and Niv Cohen},
  booktitle={NeurIPS},
  year={2025}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support