zR
commited on
Commit
·
7031540
1
Parent(s):
ade85af
fix
Browse files- README.md +4 -1
- README_en.md +3 -1
- config.json +1 -1
- generation_config.json +1 -1
- modeling_chatglm.py +5 -223
README.md
CHANGED
|
@@ -46,7 +46,10 @@ GLM-4V-9B 是一个多模态语言模型,具备视觉理解能力,其相关
|
|
| 46 |
|
| 47 |
## 运行模型
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
```python
|
| 52 |
import torch
|
|
|
|
| 46 |
|
| 47 |
## 运行模型
|
| 48 |
|
| 49 |
+
**更多推理代码和依赖信息,请访问我们的 [github](https://github.com/THUDM/GLM-4)。**
|
| 50 |
+
|
| 51 |
+
**请严格按照[依赖](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt)安装,否则无法正常运行。**
|
| 52 |
+
。
|
| 53 |
|
| 54 |
```python
|
| 55 |
import torch
|
README_en.md
CHANGED
|
@@ -29,7 +29,9 @@ GLM-4V-9B is a multimodal language model with visual understanding capabilities.
|
|
| 29 |
|
| 30 |
## Quick Start
|
| 31 |
|
| 32 |
-
For more inference code and requirements, please visit our [github page](https://github.com/THUDM/GLM-4)
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
```python
|
|
|
|
| 29 |
|
| 30 |
## Quick Start
|
| 31 |
|
| 32 |
+
**For more inference code and requirements, please visit our [github page](https://github.com/THUDM/GLM-4).**
|
| 33 |
+
|
| 34 |
+
**Please strictly follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) to install, otherwise it will not run properly**
|
| 35 |
|
| 36 |
|
| 37 |
```python
|
config.json
CHANGED
|
@@ -50,7 +50,7 @@
|
|
| 50 |
"seq_length": 8192,
|
| 51 |
"use_cache": true,
|
| 52 |
"torch_dtype": "bfloat16",
|
| 53 |
-
"transformers_version": "4.
|
| 54 |
"tie_word_embeddings": false,
|
| 55 |
"eos_token_id": [151329, 151336, 151338],
|
| 56 |
"pad_token_id": 151329,
|
|
|
|
| 50 |
"seq_length": 8192,
|
| 51 |
"use_cache": true,
|
| 52 |
"torch_dtype": "bfloat16",
|
| 53 |
+
"transformers_version": "4.42.4",
|
| 54 |
"tie_word_embeddings": false,
|
| 55 |
"eos_token_id": [151329, 151336, 151338],
|
| 56 |
"pad_token_id": 151329,
|
generation_config.json
CHANGED
|
@@ -9,5 +9,5 @@
|
|
| 9 |
"temperature": 0.8,
|
| 10 |
"max_length": 8192,
|
| 11 |
"top_p": 0.8,
|
| 12 |
-
"transformers_version": "4.
|
| 13 |
}
|
|
|
|
| 9 |
"temperature": 0.8,
|
| 10 |
"max_length": 8192,
|
| 11 |
"top_p": 0.8,
|
| 12 |
+
"transformers_version": "4.42.4"
|
| 13 |
}
|
modeling_chatglm.py
CHANGED
|
@@ -1,18 +1,13 @@
|
|
| 1 |
-
""" PyTorch
|
| 2 |
-
import json
|
| 3 |
import math
|
| 4 |
-
import copy
|
| 5 |
-
import warnings
|
| 6 |
import sys
|
| 7 |
-
|
| 8 |
import torch
|
| 9 |
import torch.utils.checkpoint
|
| 10 |
import torch.nn.functional as F
|
| 11 |
from torch import nn
|
| 12 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
| 13 |
from torch.nn.utils import skip_init
|
| 14 |
-
from typing import Optional, Tuple, Union, List,
|
| 15 |
-
from copy import deepcopy
|
| 16 |
|
| 17 |
from transformers.modeling_outputs import (
|
| 18 |
BaseModelOutputWithPast,
|
|
@@ -853,11 +848,6 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
| 853 |
batch_size, seq_length = input_ids.shape
|
| 854 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
| 855 |
|
| 856 |
-
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
| 857 |
-
if not self.supports_gradient_checkpointing:
|
| 858 |
-
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
|
| 859 |
-
|
| 860 |
-
|
| 861 |
class Embedding(torch.nn.Module):
|
| 862 |
"""Language model embeddings."""
|
| 863 |
|
|
@@ -1095,9 +1085,10 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
| 1095 |
standardize_cache_format: bool = False,
|
| 1096 |
) -> Dict[str, Any]:
|
| 1097 |
# update past_key_values
|
| 1098 |
-
|
| 1099 |
outputs, standardize_cache_format=standardize_cache_format
|
| 1100 |
)
|
|
|
|
| 1101 |
|
| 1102 |
# update attention mask
|
| 1103 |
if "attention_mask" in model_kwargs:
|
|
@@ -1204,7 +1195,6 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
| 1204 |
|
| 1205 |
loss = None
|
| 1206 |
if labels is not None:
|
| 1207 |
-
# https://github.com/THUDM/GLM-4/issues/264
|
| 1208 |
new_labels = []
|
| 1209 |
for i in range(len(input_ids)):
|
| 1210 |
input_id = input_ids[i].tolist()
|
|
@@ -1216,16 +1206,12 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
| 1216 |
(
|
| 1217 |
labels[i, :boi_token_pos + 1],
|
| 1218 |
torch.tensor([-100]).to(labels.device).to(labels.dtype).repeat(1600),
|
| 1219 |
-
labels[i, eoi_token_pos:])))
|
| 1220 |
|
| 1221 |
labels = torch.stack(new_labels, dim=0)
|
| 1222 |
-
|
| 1223 |
lm_logits = lm_logits.to(torch.float32)
|
| 1224 |
-
|
| 1225 |
-
# Shift so that tokens < n predict n
|
| 1226 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1227 |
shift_labels = labels[..., 1:].contiguous()
|
| 1228 |
-
# Flatten the tokens
|
| 1229 |
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
| 1230 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1231 |
|
|
@@ -1263,210 +1249,6 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
| 1263 |
for layer_past in past
|
| 1264 |
)
|
| 1265 |
|
| 1266 |
-
def process_response(self, output, history):
|
| 1267 |
-
content = ""
|
| 1268 |
-
history = deepcopy(history)
|
| 1269 |
-
for response in output.split("<|assistant|>"):
|
| 1270 |
-
if "\n" in response:
|
| 1271 |
-
metadata, content = response.split("\n", maxsplit=1)
|
| 1272 |
-
else:
|
| 1273 |
-
metadata, content = "", response
|
| 1274 |
-
if not metadata.strip():
|
| 1275 |
-
content = content.strip()
|
| 1276 |
-
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
| 1277 |
-
content = content.replace("[[训练时间]]", "2023年")
|
| 1278 |
-
else:
|
| 1279 |
-
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
| 1280 |
-
if history[0]["role"] == "system" and "tools" in history[0]:
|
| 1281 |
-
parameters = json.loads(content)
|
| 1282 |
-
content = {"name": metadata.strip(), "parameters": parameters}
|
| 1283 |
-
else:
|
| 1284 |
-
content = {"name": metadata.strip(), "content": content}
|
| 1285 |
-
return content, history
|
| 1286 |
-
|
| 1287 |
-
@torch.inference_mode()
|
| 1288 |
-
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user", image=None,
|
| 1289 |
-
max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
| 1290 |
-
**kwargs):
|
| 1291 |
-
if history is None:
|
| 1292 |
-
history = []
|
| 1293 |
-
if logits_processor is None:
|
| 1294 |
-
logits_processor = LogitsProcessorList()
|
| 1295 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
| 1296 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
| 1297 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
| 1298 |
-
message = {"role": role, "content": query}
|
| 1299 |
-
if image is not None:
|
| 1300 |
-
message["image"] = image
|
| 1301 |
-
history.append(message)
|
| 1302 |
-
inputs = tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=True,
|
| 1303 |
-
return_tensors="pt", return_dict=True)
|
| 1304 |
-
inputs = inputs.to(self.device)
|
| 1305 |
-
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
| 1306 |
-
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
| 1307 |
-
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
|
| 1308 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
| 1309 |
-
response = tokenizer.decode(outputs)
|
| 1310 |
-
response, history = self.process_response(response, history)
|
| 1311 |
-
return response, history
|
| 1312 |
-
|
| 1313 |
-
@torch.inference_mode()
|
| 1314 |
-
def stream_chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user", image=None,
|
| 1315 |
-
past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
|
| 1316 |
-
logits_processor=None, return_past_key_values=False, **kwargs):
|
| 1317 |
-
if history is None:
|
| 1318 |
-
history = []
|
| 1319 |
-
if logits_processor is None:
|
| 1320 |
-
logits_processor = LogitsProcessorList()
|
| 1321 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
| 1322 |
-
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|user|>"),
|
| 1323 |
-
tokenizer.convert_tokens_to_ids("<|observation|>")]
|
| 1324 |
-
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
| 1325 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
| 1326 |
-
message = {"role": role, "content": "query"}
|
| 1327 |
-
if image is not None:
|
| 1328 |
-
message["image"] = image
|
| 1329 |
-
if past_key_values is None:
|
| 1330 |
-
inputs = tokenizer.apply_chat_template(history + [message],
|
| 1331 |
-
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
| 1332 |
-
return_dict=True)
|
| 1333 |
-
else:
|
| 1334 |
-
inputs = tokenizer.apply_chat_template([message], add_special_tokens=False,
|
| 1335 |
-
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
| 1336 |
-
return_dict=True)
|
| 1337 |
-
inputs = inputs.to(self.device)
|
| 1338 |
-
if past_key_values is not None:
|
| 1339 |
-
past_length = past_key_values[0][0].shape[2]
|
| 1340 |
-
if self.transformer.pre_seq_len is not None:
|
| 1341 |
-
past_length -= self.transformer.pre_seq_len
|
| 1342 |
-
inputs.position_ids += past_length
|
| 1343 |
-
attention_mask = inputs.attention_mask
|
| 1344 |
-
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
| 1345 |
-
inputs['attention_mask'] = attention_mask
|
| 1346 |
-
history.append({"role": role, "content": query})
|
| 1347 |
-
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
| 1348 |
-
eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
|
| 1349 |
-
**gen_kwargs):
|
| 1350 |
-
if return_past_key_values:
|
| 1351 |
-
outputs, past_key_values = outputs
|
| 1352 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
| 1353 |
-
response = tokenizer.decode(outputs)
|
| 1354 |
-
if response and response[-1] != "�":
|
| 1355 |
-
response, new_history = self.process_response(response, history)
|
| 1356 |
-
if return_past_key_values:
|
| 1357 |
-
yield response, new_history, past_key_values
|
| 1358 |
-
else:
|
| 1359 |
-
yield response, new_history
|
| 1360 |
-
|
| 1361 |
-
@torch.inference_mode()
|
| 1362 |
-
def stream_generate(
|
| 1363 |
-
self,
|
| 1364 |
-
input_ids,
|
| 1365 |
-
generation_config: Optional[GenerationConfig] = None,
|
| 1366 |
-
logits_processor: Optional[LogitsProcessorList] = None,
|
| 1367 |
-
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 1368 |
-
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
| 1369 |
-
return_past_key_values=False,
|
| 1370 |
-
**kwargs,
|
| 1371 |
-
):
|
| 1372 |
-
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
| 1373 |
-
|
| 1374 |
-
if generation_config is None:
|
| 1375 |
-
generation_config = self.generation_config
|
| 1376 |
-
generation_config = copy.deepcopy(generation_config)
|
| 1377 |
-
model_kwargs = generation_config.update(**kwargs)
|
| 1378 |
-
model_kwargs["use_cache"] = generation_config.use_cache
|
| 1379 |
-
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
| 1380 |
-
|
| 1381 |
-
if isinstance(eos_token_id, int):
|
| 1382 |
-
eos_token_id = [eos_token_id]
|
| 1383 |
-
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
| 1384 |
-
|
| 1385 |
-
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
| 1386 |
-
if has_default_max_length and generation_config.max_new_tokens is None:
|
| 1387 |
-
warnings.warn(
|
| 1388 |
-
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
| 1389 |
-
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
| 1390 |
-
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
| 1391 |
-
UserWarning,
|
| 1392 |
-
)
|
| 1393 |
-
elif generation_config.max_new_tokens is not None:
|
| 1394 |
-
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
| 1395 |
-
if not has_default_max_length:
|
| 1396 |
-
logger.warn(
|
| 1397 |
-
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
| 1398 |
-
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
| 1399 |
-
"Please refer to the documentation for more information. "
|
| 1400 |
-
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
| 1401 |
-
UserWarning,
|
| 1402 |
-
)
|
| 1403 |
-
|
| 1404 |
-
if input_ids_seq_length >= generation_config.max_length:
|
| 1405 |
-
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
| 1406 |
-
logger.warning(
|
| 1407 |
-
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
| 1408 |
-
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
| 1409 |
-
" increasing `max_new_tokens`."
|
| 1410 |
-
)
|
| 1411 |
-
|
| 1412 |
-
# 2. Set generation parameters if not already defined
|
| 1413 |
-
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
| 1414 |
-
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
| 1415 |
-
|
| 1416 |
-
logits_processor = self._get_logits_processor(
|
| 1417 |
-
generation_config=generation_config,
|
| 1418 |
-
input_ids_seq_length=input_ids_seq_length,
|
| 1419 |
-
encoder_input_ids=input_ids,
|
| 1420 |
-
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
| 1421 |
-
logits_processor=logits_processor,
|
| 1422 |
-
)
|
| 1423 |
-
|
| 1424 |
-
stopping_criteria = self._get_stopping_criteria(
|
| 1425 |
-
generation_config=generation_config, stopping_criteria=stopping_criteria
|
| 1426 |
-
)
|
| 1427 |
-
logits_warper = self._get_logits_warper(generation_config)
|
| 1428 |
-
|
| 1429 |
-
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
| 1430 |
-
scores = None
|
| 1431 |
-
while True:
|
| 1432 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 1433 |
-
# forward pass to get next token
|
| 1434 |
-
outputs = self(
|
| 1435 |
-
**model_inputs,
|
| 1436 |
-
return_dict=True,
|
| 1437 |
-
output_attentions=False,
|
| 1438 |
-
output_hidden_states=False,
|
| 1439 |
-
)
|
| 1440 |
-
|
| 1441 |
-
next_token_logits = outputs.logits[:, -1, :]
|
| 1442 |
-
|
| 1443 |
-
# pre-process distribution
|
| 1444 |
-
next_token_scores = logits_processor(input_ids, next_token_logits)
|
| 1445 |
-
next_token_scores = logits_warper(input_ids, next_token_scores)
|
| 1446 |
-
|
| 1447 |
-
# sample
|
| 1448 |
-
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
| 1449 |
-
if generation_config.do_sample:
|
| 1450 |
-
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
| 1451 |
-
else:
|
| 1452 |
-
next_tokens = torch.argmax(probs, dim=-1)
|
| 1453 |
-
# update generated ids, model inputs, and length for next step
|
| 1454 |
-
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
| 1455 |
-
model_kwargs = self._update_model_kwargs_for_generation(
|
| 1456 |
-
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
| 1457 |
-
)
|
| 1458 |
-
unfinished_sequences = unfinished_sequences.mul(
|
| 1459 |
-
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
| 1460 |
-
)
|
| 1461 |
-
if return_past_key_values:
|
| 1462 |
-
yield input_ids, outputs.past_key_values
|
| 1463 |
-
else:
|
| 1464 |
-
yield input_ids
|
| 1465 |
-
# stop when each sentence is finished, or if we exceed the maximum length
|
| 1466 |
-
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
| 1467 |
-
break
|
| 1468 |
-
|
| 1469 |
-
|
| 1470 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
| 1471 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
| 1472 |
super().__init__(config)
|
|
|
|
| 1 |
+
""" PyTorch GLM-4V model. """
|
|
|
|
| 2 |
import math
|
|
|
|
|
|
|
| 3 |
import sys
|
|
|
|
| 4 |
import torch
|
| 5 |
import torch.utils.checkpoint
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from torch import nn
|
| 8 |
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
| 9 |
from torch.nn.utils import skip_init
|
| 10 |
+
from typing import Optional, Tuple, Union, List, Dict, Any
|
|
|
|
| 11 |
|
| 12 |
from transformers.modeling_outputs import (
|
| 13 |
BaseModelOutputWithPast,
|
|
|
|
| 848 |
batch_size, seq_length = input_ids.shape
|
| 849 |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
| 850 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 851 |
class Embedding(torch.nn.Module):
|
| 852 |
"""Language model embeddings."""
|
| 853 |
|
|
|
|
| 1085 |
standardize_cache_format: bool = False,
|
| 1086 |
) -> Dict[str, Any]:
|
| 1087 |
# update past_key_values
|
| 1088 |
+
cache_name, cache = self._extract_past_from_model_output(
|
| 1089 |
outputs, standardize_cache_format=standardize_cache_format
|
| 1090 |
)
|
| 1091 |
+
model_kwargs[cache_name] = cache
|
| 1092 |
|
| 1093 |
# update attention mask
|
| 1094 |
if "attention_mask" in model_kwargs:
|
|
|
|
| 1195 |
|
| 1196 |
loss = None
|
| 1197 |
if labels is not None:
|
|
|
|
| 1198 |
new_labels = []
|
| 1199 |
for i in range(len(input_ids)):
|
| 1200 |
input_id = input_ids[i].tolist()
|
|
|
|
| 1206 |
(
|
| 1207 |
labels[i, :boi_token_pos + 1],
|
| 1208 |
torch.tensor([-100]).to(labels.device).to(labels.dtype).repeat(1600),
|
| 1209 |
+
labels[i, eoi_token_pos:])))
|
| 1210 |
|
| 1211 |
labels = torch.stack(new_labels, dim=0)
|
|
|
|
| 1212 |
lm_logits = lm_logits.to(torch.float32)
|
|
|
|
|
|
|
| 1213 |
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1214 |
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
| 1215 |
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
| 1216 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1217 |
|
|
|
|
| 1249 |
for layer_past in past
|
| 1250 |
)
|
| 1251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1252 |
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
| 1253 |
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
| 1254 |
super().__init__(config)
|