File size: 15,344 Bytes
7336cba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
---
language:
- pl
license: gpl-3.0
tags:
- text-classification
- emotion-classification
- sentiment-analysis
- polish
- multi-label-classification
- twitter
datasets:
- yazoniak/TwitterEmo-PL-Refined
base_model: PKOBP/polish-roberta-8k
metrics:
- f1
- accuracy
pipeline_tag: text-classification
model-index:
- name: twitter-emotion-pl-classifier
results:
- task:
type: text-classification
name: Multi-Label Emotion Classification
dataset:
type: yazoniak/TwitterEmo-PL-Refined
name: TwitterEmo-PL-Refined
split: validation
metrics:
- type: f1
value: 0.8500
name: F1 Macro
verified: true
args:
average: macro
- type: f1
value: 0.8900
name: F1 Micro
verified: true
args:
average: micro
- type: f1
value: 0.8895
name: F1 Weighted
verified: true
args:
average: weighted
- type: accuracy
value: 0.5125
name: Exact Match Accuracy
verified: true
- type: accuracy
value: 0.8900
name: Subset Accuracy
verified: true
---
# Polish Twitter Emotion Classifier (RoBERTa-8k)
## Model Description
This model is a fine-tuned version of [PKOBP/polish-roberta-8k](https://huggingface.co/PKOBP/polish-roberta-8k) for multi-label emotion and sentiment classification in Polish. It was trained on the [TwitterEmo-PL-Refined](https://huggingface.co/datasets/yazoniak/TwitterEmo-PL-Refined) dataset.
The model predicts 8 emotion and sentiment labels simultaneously:
- **Emotions**: `radość` (joy), `wstręt` (disgust), `gniew` (anger), `przeczuwanie` (anticipation)
- **Sentiment**: `pozytywny` (positive), `negatywny` (negative), `neutralny` (neutral)
- **Special**: `sarkazm` (sarcasm)
### Model Details
- **Model type**: RoBERTa (Polish)
- **Language**: Polish
- **Base model**: [PKOBP/polish-roberta-8k](https://huggingface.co/PKOBP/polish-roberta-8k)
- **Task**: Multi-label text classification (emotion & sentiment)
- **Training data**: 35,921 Polish tweets from TwitterEmo-PL-Refined
- **License**: GPL-3.0
- **Context window**: 8,192 tokens (max; for tweet-length texts you can use a smaller tokenizer `max_length`, e.g., 256-1024)
## Intended Use
### Primary Use Cases
- **Social media monitoring**: Analyze emotions and sentiment in Polish tweets and social media posts
- **Customer feedback analysis**: Understand emotional responses in Polish customer reviews
- **Research**: Study emotion expression patterns in Polish language social media
- **Multi-label sentiment analysis**: Capture nuanced emotional states beyond binary positive/negative
### Out-of-Scope Use
- This model is specifically trained on Polish Twitter data and may not generalize well to:
- Formal Polish text (news articles, academic writing)
- Other languages
- Very long documents (optimal for tweet-length texts)
## Performance
### Overall Metrics
| Metric | Score |
|--------|-------|
| **F1 Macro** | **0.8500** |
| **F1 Micro** | **0.8900** |
| **F1 Weighted** | **0.8895** |
| **Exact Match Accuracy** | **0.5125** |
| **Subset Accuracy** | **0.8900** |
| **Validation Loss** | **0.2761** |
### Per-Label Performance
| Label | F1 Score | Coverage |
|-------|----------|----------|
| **negatywny** (negative) | **0.8553** | 42.4% |
| **neutralny** (neutral) | **0.8172** | 41.0% |
| **pozytywny** (positive) | **0.7814** | 17.4% |
| **gniew** (anger) | **0.7693** | 25.8% |
| **radość** (joy) | **0.7476** | 11.9% |
| **wstręt** (disgust) | **0.7337** | 20.4% |
| **przeczuwanie** (anticipation) | **0.7220** | 21.6% |
| **sarkazm** (sarcasm) | **0.5337** | 16.0% |
## Training Details
### Training Data
The model was trained on [TwitterEmo-PL-Refined](https://huggingface.co/datasets/yazoniak/TwitterEmo-PL-Refined), which contains:
- **Total samples**: 35,921 Polish tweets
- **Label distribution**:
- `negatywny`: 15,231 samples (42.4%)
- `neutralny`: 14,720 samples (41.0%)
- `gniew`: 9,252 samples (25.8%)
- `przeczuwanie`: 7,776 samples (21.6%)
- `wstręt`: 7,337 samples (20.4%)
- `pozytywny`: 6,248 samples (17.4%)
- `sarkazm`: 5,756 samples (16.0%)
- `radość`: 4,283 samples (11.9%)
### Training Configuration
```python
Model: PKOBP/polish-roberta-8k
Training samples: 28,737 (80%)
Validation samples: 7,184 (20%)
Hyperparameters:
- Learning rate: 1e-5
- Batch size: 32 (train), 32 (eval)
- Epochs: 4
- Weight decay: 0.03
- Warmup ratio: 0.1
- Dropout rate: 0.2
- Max gradient norm: 1.0
- Optimizer: AdamW
- LR scheduler: Cosine with warmup
- Early stopping patience: 3
- Mixed precision: BF16
Training strategy:
- Save strategy: Every 200 steps
- Evaluation strategy: Every 200 steps
- Best model selection: F1 Macro
- Total training steps: 3,600
- Best checkpoint: 3,400
```
### Training Process
Training was conducted on single NVIDIA RTX 3090 GPU using a stratified 80/20 train-validation split with the following progression:

## Calibration
The model's predictions can be improved using **temperature scaling** and **optimized thresholds**. Calibration analysis shows:
### Temperature Scaling Results
Per-label temperature scaling reduces calibration error (Expected Calibration Error - ECE):
| Label | Temperature | ECE Before | ECE After | Improvement |
|-------|------------|------------|-----------|-------------|
| `radość` | 1.066 | 0.0163 | 0.0166 | -1.8% |
| `wstręt` | 1.117 | 0.0211 | 0.0152 | **+27.9%** |
| `gniew` | 1.186 | 0.0308 | 0.0194 | **+37.0%** |
| `przeczuwanie` | 1.102 | 0.0228 | 0.0237 | -3.9% |
| `pozytywny` | 1.181 | 0.0280 | 0.0293 | -4.6% |
| `negatywny` | 1.437 | 0.0594 | 0.0345 | **+41.9%** |
| `neutralny` | 1.472 | 0.0696 | 0.0390 | **+44.0%** |
| `sarkazm` | 1.078 | 0.0202 | 0.0202 | 0.0% |
**Key findings:**
- `neutralny`, `negatywny`, and `gniew` benefit most from temperature scaling
- Some labels (`radość`, `przeczuwanie`, `pozytywny`) show minor degradation
- Overall, calibration significantly improves probability reliability
### Optimized Decision Thresholds
Per-label F1-optimized thresholds (vs. default 0.5):
| Label | Optimal Threshold | F1 @ Optimal | F1 @ 0.5 | Improvement |
|-------|------------------|--------------|----------|-------------|
| `neutralny` | **0.330** | **0.8211** | 0.8110 | **+1.00%** |
| `sarkazm` | **0.330** | **0.5766** | 0.5256 | **+5.10%** |
| `przeczuwanie` | 0.410 | 0.7276 | 0.7187 | +0.89% |
| `gniew` | 0.440 | 0.7692 | 0.7676 | +0.16% |
| `negatywny` | 0.450 | 0.8516 | 0.8511 | +0.05% |
| `wstręt` | 0.460 | 0.7477 | 0.7464 | +0.13% |
| `pozytywny` | 0.510 | 0.7864 | 0.7859 | +0.04% |
| `radość` | 0.560 | 0.7572 | 0.7558 | +0.14% |
**Key findings:**
- `sarkazm` shows the largest improvement (+5.10%) with a lower threshold (0.33)
- `neutralny` also benefits significantly (+1.00%) from a lower threshold (0.33)
- Most labels perform optimally near the default 0.5 threshold
- Total improvement with optimized thresholds: **~0.5-1.0% F1 Macro**
### Calibration Files
The model repository includes:
- **Base model**: `model.safetensors` - Use with default threshold (0.5)
- **Calibration artifacts**: `calibration_artifacts.json` - Contains temperature parameters and optimal thresholds

**Recommendation**: For production use, apply both temperature scaling and optimized thresholds for best performance.
## Model Files
This repository contains:
- **Model weights**: `model.safetensors` - Fine-tuned RoBERTa model
- **Tokenizer**: `tokenizer.json`, `tokenizer_config.json` - Polish RoBERTa tokenizer
- **Configuration**: `config.json` - Model configuration
- **Calibration**: `calibration_artifacts.json` - Temperature scaling parameters and optimal thresholds
- **Inference scripts**:
- `predict.py` - Basic inference (threshold: 0.5)
- `predict_calibrated.py` - Calibrated inference (recommended)
- **Training artifacts**: `training_plots`, `calibration_reliability_diagrams`
- **Requirements**: `requirements.txt` - Python dependencies
- **License**: `LICENSE` - Full GPL-3.0 license text
### Installation
```bash
pip install -r requirements.txt
```
Or install dependencies manually:
```bash
pip install transformers torch numpy
```
## Usage
### Important: Text Preprocessing
**The model expects @mentions to be anonymized**, as they were during training. Both inference scripts automatically replace all `@username` mentions with `@anonymized_account` to match the training data distribution.
### Quick Start (Basic Inference)
Use the `predict.py` script for basic inference with default threshold (0.5):
```bash
# From Hugging Face (default) - mentions are automatically anonymized
python predict.py "Uwielbiam czekać na peronie 3 godziny! Gratulacje dla #zgp"
# Example with mentions
python predict.py "@zgp_intervillage Uwielbiam czekać na peronie 3 godziny! Gratulacje dla #zgp"
# Preprocessed internally: "@anonymized_account Uwielbiam czekać..."
# From local model
python predict.py "Uwielbiam czekać na peronie 3 godziny! Gratulacje dla #zgp" --model-path ./
# With custom threshold
python predict.py "Uwielbiam czekać na peronie 3 godziny! Gratulacje dla #zgp" --model-path ./ --threshold 0.3
```
**Example Output:**
```
Loading model from: yazoniak/twitter-emotion-pl-classifier
Input text: Uwielbiam czekać na peronie 3 godziny! Gratulacje dla #zgp
Assigned Labels:
----------------------------------------
radość
pozytywny
sarkazm
All Labels (with probabilities):
----------------------------------------
✓ radość : 0.9574
wstręt : 0.0566
gniew : 0.0516
przeczuwanie : 0.0347
✓ pozytywny : 0.9782
negatywny : 0.0602
neutralny : 0.0336
✓ sarkazm : 0.5404
```
### With Calibration
Use the `predict_calibrated.py` script for calibrated inference with temperature scaling and optimized thresholds:
```bash
# From Hugging Face with calibration (requires calibration_artifacts.json)
python predict_calibrated.py "Uwielbiam czekać na peronie 3 godziny! Gratulacje dla #zgp"
```
### Python API Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np
import re
def preprocess_text(text):
"""Preprocess text to match training data format."""
# Anonymize @mentions (IMPORTANT for best performance)
text = re.sub(r'@\w+', '@anonymized_account', text)
return text
# Load model
model_name = "yazoniak/twitter-emotion-pl-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()
# Get labels from model config
labels = [model.config.id2label[i] for i in range(model.config.num_labels)]
# Prepare input with preprocessing
text = "@jan_kowalski To jest wspaniały dzień!"
preprocessed_text = preprocess_text(text) # "@anonymized_account To jest wspaniały dzień!"
inputs = tokenizer(preprocessed_text, return_tensors="pt", truncation=True, max_length=8192)
# Inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get probabilities
probabilities = torch.sigmoid(logits).squeeze().numpy()
# Apply threshold
threshold = 0.5
predictions = {
label: float(prob)
for label, prob in zip(labels, probabilities)
if prob > threshold
}
print(predictions)
# Output: {'radość': 0.8734, 'pozytywny': 0.9156}
```
### Interpretation
The model outputs logits for each of the 8 labels. To get predictions:
1. **Without calibration**: Apply sigmoid, threshold at 0.5
1. **With calibration**:
- Apply sigmoid
- Apply temperature scaling (divide logits by temperature before sigmoid)
- Apply per-label optimized thresholds
## Limitations and Biases
### Known Limitations
1. **Preprocessing required**: The model expects `@mentions` to be anonymized as `@anonymized_account` (matching training data). The provided inference scripts handle this automatically, but custom implementations must include this preprocessing step for optimal performance.
1. **Sarcasm detection**: The model struggles with Polish sarcasm (F1: 0.53), which is inherently difficult to detect in text for BERT models without additional context.
1. **Class imbalance**: Performance varies with label frequency:
- High-frequency labels (`negatywny`, `neutralny`) perform best
- Low-frequency labels (`radość`, `sarkazm`) show lower F1 scores
1. **Twitter-specific**: The model is optimized for tweet-length texts (up to 8,192 tokens) with informal language, hashtags, and mentions.
## Citation
If you use this model in your research or applications, please cite:
```bibtex
@model{yazoniak2025twitteremotionpl,
title={Polish Twitter Emotion Classifier (RoBERTa-8k)},
author={yazoniak},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/yazoniak/twitter-emotion-pl-classifier}
}
```
Also cite the base model and dataset:
```bibtex
@dataset{yazoniak_twitteremo_pl_refined_2025,
title = {TwitterEmo-PL-Refined: Polish Twitter Emotions (8 labels, refined)},
author = {yazoniak},
year = {2025},
url = {https://huggingface.co/datasets/yazoniak/TwitterEmo-PL-Refined}
}
@inproceedings{bogdanowicz2023twitteremo,
title = {TwitterEmo: Annotating Emotions and Sentiment in Polish Twitter},
author = {Bogdanowicz, S. and Cwynar, H. and Zwierzchowska, A. and Klamra, C. and Kiera{\'s}, W. and Kobyli{\'n}ski, {\L}.},
booktitle = {Computational Science -- ICCS 2023},
series = {Lecture Notes in Computer Science},
volume = {14074},
publisher = {Springer, Cham},
year = {2023},
doi = {10.1007/978-3-031-36021-3_20}
}
```
## Acknowledgments
- **Base model**: [PKOBP/polish-roberta-8k](https://huggingface.co/PKOBP/polish-roberta-8k)
- **Original dataset**: [CLARIN-PL TwitterEmo](https://huggingface.co/datasets/clarin-pl/twitteremo)
- **Label cleaning**: Cleanlab library for noise detection
- **LLM assistance**: Gemini-2.5-Flash and GPT-4.1 for label review
## License
### License Terms
This model is released under the **GNU General Public License v3.0 (GPL-3.0)**, inherited from the training dataset.
**License Chain:**
- **Base Model** ([PKOBP/polish-roberta-8k](https://huggingface.co/PKOBP/polish-roberta-8k)): Apache-2.0
- **Training Dataset** ([TwitterEmo-PL-Refined](https://huggingface.co/datasets/yazoniak/TwitterEmo-PL-Refined)): GPL-3.0
- **Original Dataset** ([clarin-pl/twitteremo](https://huggingface.co/datasets/clarin-pl/twitteremo)): GPL-3.0
- **This Fine-tuned Model**: **GPL-3.0** (inherited from training data)
### Full License Text
The complete GPL-3.0 license text is available in the [LICENSE](LICENSE) file in this repository, or at: https://www.gnu.org/licenses/gpl-3.0.html
## Model Card Contact
For questions, issues, or feedback about this model, please open an issue in the model repository or contact the author through Hugging Face.
______________________________________________________________________
**Model Version**: v1.0
**Last Updated**: 2025-10-10
|