--- license: llama2 library_name: transformers pipeline_tag: text-generation tags: - code ---
CodeV is an innovative series of open-source, instruction-tuned Large Language Models (LLMs) specifically designed for the generation of high-quality Verilog code, addressing the challenges faced by existing models in this domain. **(This repo is under development)**
## Models and Datasets
| | Base Model | CodeV |
| ---- | --------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| 6.7B | [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) | [yang-z/CodeV-DS-6.7B](https://huggingface.co/yang-z/CodeV-DS-6.7B) |
| 7B | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [yang-z/CodeV-CL-7B](https://huggingface.co/yang-z/CodeV-CL-7B) |
| 7B | [Qwen/CodeQwen1.5-7B-Chat](https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat) | [yang-z/CodeV-QW-7B](https://huggingface.co/yang-z/CodeV-QW-7B) |
## Test
If you want to test the generation capability of existing models on Verilog, you need to install the [VerilogEval](https://github.com/NVlabs/verilog-eval) and [RTLLM](https://github.com/hkust-zhiyao/rtllm) environments.
## Quick Start
```python
from transformers import pipeline
import torch
prompt= "FILL IN THE QUESTION"
generator = pipeline(
model="CODEV",
task="text-generation",
torch_dtype=torch.bfloat16,
device_map="auto",
)
result = generator(prompt , max_length=2048, num_return_sequences=1, temperature=0.0)
response = result[0]["generated_text"]
print("Response:", response)
```
## Paper
**Arxiv:**