zhaoyang
commited on
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,65 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
<div align="center">
|
| 5 |
+
<img src="./assets/logo.png" style="zoom:25%;" />
|
| 6 |
+
</div>
|
| 7 |
+
|
| 8 |
+
# CodeV:Empowering LLMs for Verilog Generation through Multi-Level Summarization
|
| 9 |
+
|
| 10 |
+
<img src="assets/overview.png" style="zoom:50%;" />
|
| 11 |
+
|
| 12 |
+
CodeV is an innovative series of open-source, instruction-tuned Large Language Models (LLMs) specifically designed for the generation of high-quality Verilog code, addressing the challenges faced by existing models in this domain. **(This repo is under development)**
|
| 13 |
+
|
| 14 |
+
## Models and Datasets
|
| 15 |
+
|
| 16 |
+
| | Base Model | CodeV |
|
| 17 |
+
| ---- | --------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
|
| 18 |
+
| 6.7B | [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) | [[zyyy1023399127/CodeV-DS-6.7B](https://huggingface.co/zyyy1023399127/CodeV-DS-6.7B) |
|
| 19 |
+
| 7B | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [zyyy1023399127/CodeV-CL-7B](https://huggingface.co/zyyy1023399127/CodeV-CL-7B) |
|
| 20 |
+
| 7B | [Qwen/CodeQwen1.5-7B-Chat](https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat) | [zyyy1023399127/CodeV-QW-7B](https://huggingface.co/zyyy1023399127/CodeV-QW-7B) |
|
| 21 |
+
|
| 22 |
+
## Test
|
| 23 |
+
|
| 24 |
+
If you want to test the generation capability of existing models on Verilog, you need to install the [VerilogEval](https://github.com/NVlabs/verilog-eval) and [RTLLM](https://github.com/hkust-zhiyao/rtllm) environments.
|
| 25 |
+
|
| 26 |
+
## Quick Start
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
from transformers import pipeline
|
| 30 |
+
|
| 31 |
+
import torch
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
prompt= "FILL IN THE QUESTION"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
generator = pipeline(
|
| 40 |
+
|
| 41 |
+
model="CODEV",
|
| 42 |
+
|
| 43 |
+
task="text-generation",
|
| 44 |
+
|
| 45 |
+
torch_dtype=torch.bfloat16,
|
| 46 |
+
|
| 47 |
+
device_map="auto",
|
| 48 |
+
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
result = generator(prompt , max_length=2048, num_return_sequences=1, temperature=0.0)
|
| 54 |
+
|
| 55 |
+
response = result[0]["generated_text"]
|
| 56 |
+
|
| 57 |
+
print("Response:", response)
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Acknowledgements
|
| 61 |
+
|
| 62 |
+
* [Magicoder](https://github.com/ise-uiuc/magicoder): Training code, original datasets and data decontamination
|
| 63 |
+
* [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder): Base model for CodeV-DeepSeek
|
| 64 |
+
* [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/): Base model for CodeLlama
|
| 65 |
+
* [CodeQwen](https://github.com/QwenLM/CodeQwen1.5): CodeV-CodeQwen
|