Update README.md
Browse files
README.md
CHANGED
|
@@ -7,25 +7,37 @@ license: apache-2.0
|
|
| 7 |
|
| 8 |
<h2><a href="https://www.arxiv.org/abs/2505.10238">MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation</a></h2>
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
> Official project page of **MTVCrafter**, a novel framework for general and high-quality human image animation using raw 3D motion sequences.
|
| 11 |
|
| 12 |
-
|
| 13 |
-
[
|
| 14 |
-
[
|
| 15 |
-
[Kunchang Li](https://scholar.google.com/citations?user=D4tLSbsAAAAJ),
|
| 16 |
-
[Zhengrong Yue](https://arxiv.org/search/?searchtype=author&query=Zhengrong%20Yue),
|
| 17 |
-
[Yu Qiao](https://scholar.google.com/citations?user=gFtI-8QAAAAJ&hl),
|
| 18 |
[Yali Wangβ ](https://scholar.google.com/citations?user=hD948dkAAAAJ)
|
| 19 |
-
-->
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
|
| 26 |
</div>
|
| 27 |
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
## π Abstract
|
| 30 |
|
| 31 |
Human image animation has attracted increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information.
|
|
@@ -69,7 +81,8 @@ we use learnable unconditional tokens for motion classifier-free guidance.
|
|
| 69 |
We recommend using a clean Python environment (Python 3.10+).
|
| 70 |
|
| 71 |
```bash
|
| 72 |
-
clone
|
|
|
|
| 73 |
|
| 74 |
# Create virtual environment
|
| 75 |
conda create -n mtvcrafter python=3.11
|
|
@@ -79,48 +92,99 @@ conda activate mtvcrafter
|
|
| 79 |
pip install -r requirements.txt
|
| 80 |
```
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
## π Usage
|
| 83 |
|
| 84 |
-
To animate a human image with a given 3D motion sequence,
|
| 85 |
-
you first need to
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
```bash
|
| 88 |
python process_nlf.py "your_video_directory"
|
| 89 |
```
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
|
|
|
| 93 |
```bash
|
| 94 |
-
python
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
```
|
| 96 |
|
| 97 |
-
|
| 98 |
-
- `--motion_data_path`: Path to the motion sequence (.pkl format).
|
| 99 |
-
- `--output_path`: Where to save the generated animation results.
|
| 100 |
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
```bash
|
| 104 |
accelerate launch train_vqvae.py
|
| 105 |
```
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
## π Citation
|
| 108 |
|
| 109 |
If you find our work useful, please consider citing:
|
| 110 |
|
| 111 |
```bibtex
|
| 112 |
-
@
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
archivePrefix={arXiv},
|
| 118 |
-
primaryClass={cs.CV},
|
| 119 |
-
url={https://arxiv.org/abs/2505.10238},
|
| 120 |
}
|
| 121 |
```
|
| 122 |
|
| 123 |
## π¬ Contact
|
| 124 |
|
| 125 |
For questions or collaboration, feel free to reach out via GitHub Issues
|
| 126 |
-
or email me at π§ [email protected].
|
|
|
|
| 7 |
|
| 8 |
<h2><a href="https://www.arxiv.org/abs/2505.10238">MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation</a></h2>
|
| 9 |
|
| 10 |
+
<meta name="google-site-verification" content="-XQC-POJtlDPD3i2KSOxbFkSBde_Uq9obAIh_4mxTkM" />
|
| 11 |
+
|
| 12 |
+
<div align="center">
|
| 13 |
+
|
| 14 |
+
<h2><a href="https://www.arxiv.org/abs/2505.10238">MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation</a></h2>
|
| 15 |
+
|
| 16 |
> Official project page of **MTVCrafter**, a novel framework for general and high-quality human image animation using raw 3D motion sequences.
|
| 17 |
|
| 18 |
+
[Yanbo Ding](https://scholar.google.com/citations?user=r_ty-f0AAAAJ&hl=zh-CN),
|
| 19 |
+
[Xirui Hu](https://scholar.google.com/citations?user=-C7R25QAAAAJ&hl=zh-CN&oi=ao),
|
| 20 |
+
[Zhizhi Guo](https://dblp.org/pid/179/1036.html),
|
|
|
|
|
|
|
|
|
|
| 21 |
[Yali Wangβ ](https://scholar.google.com/citations?user=hD948dkAAAAJ)
|
|
|
|
| 22 |
|
| 23 |
+
[](https://www.arxiv.org/abs/2505.10238)
|
| 24 |
+
[](https://huggingface.co/yanboding/MTVCrafter)
|
| 25 |
+
[](https://www.modelscope.cn/models/AI-ModelScope/MTVCrafter)
|
| 26 |
+
[](https://dingyanb.github.io/MTVCtafter/)
|
| 27 |
+
[](https://dingyanb.github.io/MTVCrafter-/)
|
| 28 |
|
| 29 |
</div>
|
| 30 |
|
| 31 |
|
| 32 |
+
## π ToDo List
|
| 33 |
+
|
| 34 |
+
- [x] Release **global dataset statistics** (mean / std)
|
| 35 |
+
- [x] Release **4D MoT** model
|
| 36 |
+
- [x] Release **MV-DiT-7B** (based on *CogVideoX-T2V-5B*)
|
| 37 |
+
- [x] Release **MV-DiT-17B** (based on *Wan-2.1-I2V-14B*)
|
| 38 |
+
- [ ] Release a Hugging Face Demo Space
|
| 39 |
+
|
| 40 |
+
|
| 41 |
## π Abstract
|
| 42 |
|
| 43 |
Human image animation has attracted increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely on 2D-rendered pose images for motion guidance, which limits generalization and discards essential 3D information.
|
|
|
|
| 81 |
We recommend using a clean Python environment (Python 3.10+).
|
| 82 |
|
| 83 |
```bash
|
| 84 |
+
git clone https://github.com/your-username/MTVCrafter.git
|
| 85 |
+
cd MTVCrafter
|
| 86 |
|
| 87 |
# Create virtual environment
|
| 88 |
conda create -n mtvcrafter python=3.11
|
|
|
|
| 92 |
pip install -r requirements.txt
|
| 93 |
```
|
| 94 |
|
| 95 |
+
For models regarding:
|
| 96 |
+
|
| 97 |
+
1. **NLF-Pose Estimator**
|
| 98 |
+
Download [`nlf_l_multi.torchscript`](https://github.com/isarandi/nlf/releases) from the NLF release page.
|
| 99 |
+
|
| 100 |
+
2. **MV-DiT Backbone Models**
|
| 101 |
+
- **CogVideoX**: Download the [CogVideoX-5B checkpoint](https://huggingface.co/THUDM/CogVideoX-5b).
|
| 102 |
+
- **Wan-2-1**: Download the [Wan-2-1-14B checkpoint](https://huggingface.co/alibaba-pai/Wan2.1-Fun-V1.1-14B-InP) and place it under the `wan2.1/` folder.
|
| 103 |
+
|
| 104 |
+
3. **MTVCrafter Checkpoints**
|
| 105 |
+
Download the MV-DiT and 4DMoT checkpoints from [MTVCrafter on Hugging Face](https://huggingface.co/yanboding/MTVCrafter).
|
| 106 |
+
|
| 107 |
+
4. *(Optional but recommended)*
|
| 108 |
+
Download the enhanced LoRA for better performance of Wan2.1_I2V_14B:
|
| 109 |
+
[`Wan2.1_I2V_14B_FusionX_LoRA.safetensors`](https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX/blob/main/FusionX_LoRa/Wan2.1_I2V_14B_FusionX_LoRA.safetensors)
|
| 110 |
+
Place it under the `wan2.1/` folder.
|
| 111 |
+
|
| 112 |
+
---
|
| 113 |
+
|
| 114 |
## π Usage
|
| 115 |
|
| 116 |
+
To animate a human image with a given 3D motion sequence,
|
| 117 |
+
you first need to prepare SMPL motion-video pairs. You can either:
|
| 118 |
+
|
| 119 |
+
- Use the provided sample data: `data/sampled_data.pkl`, or
|
| 120 |
+
- Extract SMPL motion sequences from your own driving video using:
|
| 121 |
|
| 122 |
```bash
|
| 123 |
python process_nlf.py "your_video_directory"
|
| 124 |
```
|
| 125 |
|
| 126 |
+
This will generate a motion-video `.pkl` file under `"your_video_directory"`.
|
| 127 |
+
|
| 128 |
+
---
|
| 129 |
+
|
| 130 |
+
#### βΆοΈ Inference of MV-DiT-7B
|
| 131 |
+
```bash
|
| 132 |
+
python infer_7b.py \
|
| 133 |
+
--ref_image_path "ref_images/human.png" \
|
| 134 |
+
--motion_data_path "data/sampled_data.pkl" \
|
| 135 |
+
--output_path "inference_output"
|
| 136 |
+
```
|
| 137 |
|
| 138 |
+
#### βΆοΈ Inference of MV-DiT-17B (with text control)
|
| 139 |
```bash
|
| 140 |
+
python infer_17b.py \
|
| 141 |
+
--ref_image_path "ref_images/woman.png" \
|
| 142 |
+
--motion_data_path "data/sampled_data.pkl" \
|
| 143 |
+
--output_path "inference_output" \
|
| 144 |
+
--prompt "The woman is dancing on the beach, waves, sunset."
|
| 145 |
```
|
| 146 |
|
| 147 |
+
**Arguments:**
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
- `--ref_image_path`: Path to the reference character image.
|
| 150 |
+
- `--motion_data_path`: Path to the SMPL motion sequence (.pkl format).
|
| 151 |
+
- `--output_path`: Directory to save the generated video.
|
| 152 |
+
- `--prompt` (optional): Text prompt describing the scene or style.
|
| 153 |
+
|
| 154 |
+
---
|
| 155 |
+
|
| 156 |
+
### ποΈββοΈ Training 4DMoT
|
| 157 |
+
|
| 158 |
+
To train the 4DMoT tokenizer on your own dataset:
|
| 159 |
|
| 160 |
```bash
|
| 161 |
accelerate launch train_vqvae.py
|
| 162 |
```
|
| 163 |
|
| 164 |
+
---
|
| 165 |
+
|
| 166 |
+
## π Acknowledgement
|
| 167 |
+
MTVCrafter is largely built upon
|
| 168 |
+
[CogVideoX](https://github.com/THUDM/CogVideo),
|
| 169 |
+
[Wan-2-1-Fun](https://github.com/aigc-apps/VideoX-Fun).
|
| 170 |
+
We sincerely acknowledge these open-source codes and models.
|
| 171 |
+
We also appreciate the valuable insights from the researchers at Institute of Artificial Intelligence (TeleAI), China Telecom, and Shenzhen Institute of Advanced Technology.
|
| 172 |
+
|
| 173 |
+
|
| 174 |
## π Citation
|
| 175 |
|
| 176 |
If you find our work useful, please consider citing:
|
| 177 |
|
| 178 |
```bibtex
|
| 179 |
+
@article{ding2025mtvcrafter,
|
| 180 |
+
title={MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation},
|
| 181 |
+
author={Ding, Yanbo and Hu, Xirui and Guo, Zhizhi and Zhang, Chi and Wang, Yali},
|
| 182 |
+
journal={arXiv preprint arXiv:2505.10238},
|
| 183 |
+
year={2025}
|
|
|
|
|
|
|
|
|
|
| 184 |
}
|
| 185 |
```
|
| 186 |
|
| 187 |
## π¬ Contact
|
| 188 |
|
| 189 |
For questions or collaboration, feel free to reach out via GitHub Issues
|
| 190 |
+
or email me at π§ [email protected].
|