Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +67 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +29 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +441 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- train_results.json +8 -0
- trainer_state.json +2967 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
| 3 |
+
datasets: xiaodongguaAIGC/X-R1-TAL-SCQ5K
|
| 4 |
+
library_name: transformers
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- X-R1
|
| 8 |
+
licence: license
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for None
|
| 12 |
+
|
| 13 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the [xiaodongguaAIGC/X-R1-TAL-SCQ5K](https://huggingface.co/datasets/xiaodongguaAIGC/X-R1-TAL-SCQ5K) dataset.
|
| 14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 15 |
+
|
| 16 |
+
## Quick start
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
from transformers import pipeline
|
| 20 |
+
|
| 21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 22 |
+
generator = pipeline("text-generation", model="None", device="cuda")
|
| 23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 24 |
+
print(output["generated_text"])
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Training procedure
|
| 28 |
+
|
| 29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/watermelonhjg/huggingface/runs/8spp7whw)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
| 33 |
+
|
| 34 |
+
### Framework versions
|
| 35 |
+
|
| 36 |
+
- TRL: 0.15.0
|
| 37 |
+
- Transformers: 4.48.2
|
| 38 |
+
- Pytorch: 2.5.1
|
| 39 |
+
- Datasets: 3.3.0
|
| 40 |
+
- Tokenizers: 0.21.0
|
| 41 |
+
|
| 42 |
+
## Citations
|
| 43 |
+
|
| 44 |
+
Cite GRPO as:
|
| 45 |
+
|
| 46 |
+
```bibtex
|
| 47 |
+
@article{zhihong2024deepseekmath,
|
| 48 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
| 49 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
| 50 |
+
year = 2024,
|
| 51 |
+
eprint = {arXiv:2402.03300},
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
Cite TRL as:
|
| 57 |
+
|
| 58 |
+
```bibtex
|
| 59 |
+
@misc{vonwerra2022trl,
|
| 60 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 61 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 62 |
+
year = 2020,
|
| 63 |
+
journal = {GitHub repository},
|
| 64 |
+
publisher = {GitHub},
|
| 65 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 66 |
+
}
|
| 67 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 0.0,
|
| 3 |
+
"train_loss": 0.283822166296343,
|
| 4 |
+
"train_runtime": 92192.5552,
|
| 5 |
+
"train_samples": 6000,
|
| 6 |
+
"train_samples_per_second": 0.195,
|
| 7 |
+
"train_steps_per_second": 0.024
|
| 8 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 2048,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 11008,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 70,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 16,
|
| 17 |
+
"num_hidden_layers": 36,
|
| 18 |
+
"num_key_value_heads": 2,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": null,
|
| 21 |
+
"rope_theta": 1000000.0,
|
| 22 |
+
"sliding_window": null,
|
| 23 |
+
"tie_word_embeddings": true,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.48.2",
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 151936
|
| 29 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.48.2"
|
| 14 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d91d5ad0f17fdf5598034f8fea6a53af405ae40ee4066ea33099d333c2921384
|
| 3 |
+
size 4957560304
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d306f3ccebea9f8b304bb2c03004b191c34c6a64e13f4d52dbc17ffd72122abb
|
| 3 |
+
size 1214366696
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 6171877376
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 235 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 319 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 343 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 355 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 439 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 440 |
+
}
|
| 441 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
| 3 |
+
size 11422063
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"padding_side": "left",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 0.0,
|
| 3 |
+
"train_loss": 0.283822166296343,
|
| 4 |
+
"train_runtime": 92192.5552,
|
| 5 |
+
"train_samples": 6000,
|
| 6 |
+
"train_samples_per_second": 0.195,
|
| 7 |
+
"train_steps_per_second": 0.024
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2967 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 3.0,
|
| 5 |
+
"eval_steps": 10,
|
| 6 |
+
"global_step": 2250,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"completion_length": 358.0412570953369,
|
| 13 |
+
"epoch": 0.013333333333333334,
|
| 14 |
+
"grad_norm": 0.1626528948545456,
|
| 15 |
+
"kl": 0.0003269195556640625,
|
| 16 |
+
"learning_rate": 1.3333333333333334e-07,
|
| 17 |
+
"loss": 0.0023,
|
| 18 |
+
"reward": 0.16000000322237612,
|
| 19 |
+
"reward_std": 0.25307216234505175,
|
| 20 |
+
"rewards/accuracy_reward": 0.09875000147148967,
|
| 21 |
+
"rewards/format_reward": 0.061250001285225154,
|
| 22 |
+
"step": 10
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"completion_length": 365.58875579833983,
|
| 26 |
+
"epoch": 0.02666666666666667,
|
| 27 |
+
"grad_norm": 0.0887719914317131,
|
| 28 |
+
"kl": 0.0004455804824829102,
|
| 29 |
+
"learning_rate": 2.6666666666666667e-07,
|
| 30 |
+
"loss": 0.0173,
|
| 31 |
+
"reward": 0.1725000019185245,
|
| 32 |
+
"reward_std": 0.20696474984288216,
|
| 33 |
+
"rewards/accuracy_reward": 0.11375000216066837,
|
| 34 |
+
"rewards/format_reward": 0.058750000689178704,
|
| 35 |
+
"step": 20
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"completion_length": 364.56750640869143,
|
| 39 |
+
"epoch": 0.04,
|
| 40 |
+
"grad_norm": 0.4593224823474884,
|
| 41 |
+
"kl": 0.003619217872619629,
|
| 42 |
+
"learning_rate": 4e-07,
|
| 43 |
+
"loss": 0.0084,
|
| 44 |
+
"reward": 0.2150000055320561,
|
| 45 |
+
"reward_std": 0.31464808210730555,
|
| 46 |
+
"rewards/accuracy_reward": 0.12000000262632966,
|
| 47 |
+
"rewards/format_reward": 0.09500000132247806,
|
| 48 |
+
"step": 30
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"completion_length": 380.52500648498534,
|
| 52 |
+
"epoch": 0.05333333333333334,
|
| 53 |
+
"grad_norm": 0.3159937262535095,
|
| 54 |
+
"kl": 0.04821491241455078,
|
| 55 |
+
"learning_rate": 5.333333333333333e-07,
|
| 56 |
+
"loss": 0.0439,
|
| 57 |
+
"reward": 0.323750005569309,
|
| 58 |
+
"reward_std": 0.38860970810055734,
|
| 59 |
+
"rewards/accuracy_reward": 0.13250000309199095,
|
| 60 |
+
"rewards/format_reward": 0.19125000201165676,
|
| 61 |
+
"step": 40
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"completion_length": 322.1050077438355,
|
| 65 |
+
"epoch": 0.06666666666666667,
|
| 66 |
+
"grad_norm": 0.6419838070869446,
|
| 67 |
+
"kl": 0.013416862487792969,
|
| 68 |
+
"learning_rate": 6.666666666666666e-07,
|
| 69 |
+
"loss": 0.0551,
|
| 70 |
+
"reward": 0.31375000393018126,
|
| 71 |
+
"reward_std": 0.3664026964455843,
|
| 72 |
+
"rewards/accuracy_reward": 0.11875000335276127,
|
| 73 |
+
"rewards/format_reward": 0.19500000402331352,
|
| 74 |
+
"step": 50
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"completion_length": 313.8512550354004,
|
| 78 |
+
"epoch": 0.08,
|
| 79 |
+
"grad_norm": 0.43794259428977966,
|
| 80 |
+
"kl": 0.031152725219726562,
|
| 81 |
+
"learning_rate": 8e-07,
|
| 82 |
+
"loss": 0.044,
|
| 83 |
+
"reward": 0.5187500116415322,
|
| 84 |
+
"reward_std": 0.3655149843543768,
|
| 85 |
+
"rewards/accuracy_reward": 0.14000000162050127,
|
| 86 |
+
"rewards/format_reward": 0.37875000573694706,
|
| 87 |
+
"step": 60
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"completion_length": 334.03500576019286,
|
| 91 |
+
"epoch": 0.09333333333333334,
|
| 92 |
+
"grad_norm": 0.43774211406707764,
|
| 93 |
+
"kl": 0.034784889221191405,
|
| 94 |
+
"learning_rate": 9.333333333333333e-07,
|
| 95 |
+
"loss": 0.0763,
|
| 96 |
+
"reward": 0.4912500069476664,
|
| 97 |
+
"reward_std": 0.418181811645627,
|
| 98 |
+
"rewards/accuracy_reward": 0.09625000236555933,
|
| 99 |
+
"rewards/format_reward": 0.3950000065378845,
|
| 100 |
+
"step": 70
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"completion_length": 292.93375568389894,
|
| 104 |
+
"epoch": 0.10666666666666667,
|
| 105 |
+
"grad_norm": 1.4061037302017212,
|
| 106 |
+
"kl": 0.04006805419921875,
|
| 107 |
+
"learning_rate": 1.0666666666666667e-06,
|
| 108 |
+
"loss": 0.0895,
|
| 109 |
+
"reward": 0.6825000144541263,
|
| 110 |
+
"reward_std": 0.40880861394107343,
|
| 111 |
+
"rewards/accuracy_reward": 0.09875000203028321,
|
| 112 |
+
"rewards/format_reward": 0.5837500099092722,
|
| 113 |
+
"step": 80
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"completion_length": 328.5087568283081,
|
| 117 |
+
"epoch": 0.12,
|
| 118 |
+
"grad_norm": 0.4465954303741455,
|
| 119 |
+
"kl": 0.0293853759765625,
|
| 120 |
+
"learning_rate": 1.2000000000000002e-06,
|
| 121 |
+
"loss": 0.1086,
|
| 122 |
+
"reward": 0.6250000076368452,
|
| 123 |
+
"reward_std": 0.42218363620340826,
|
| 124 |
+
"rewards/accuracy_reward": 0.12625000178813933,
|
| 125 |
+
"rewards/format_reward": 0.4987500081770122,
|
| 126 |
+
"step": 90
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"completion_length": 271.25250511169435,
|
| 130 |
+
"epoch": 0.13333333333333333,
|
| 131 |
+
"grad_norm": 0.4239254891872406,
|
| 132 |
+
"kl": 0.0445556640625,
|
| 133 |
+
"learning_rate": 1.3333333333333332e-06,
|
| 134 |
+
"loss": 0.0794,
|
| 135 |
+
"reward": 0.8187500163912773,
|
| 136 |
+
"reward_std": 0.4009550239890814,
|
| 137 |
+
"rewards/accuracy_reward": 0.12000000113621354,
|
| 138 |
+
"rewards/format_reward": 0.6987500078976154,
|
| 139 |
+
"step": 100
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"completion_length": 238.7037540435791,
|
| 143 |
+
"epoch": 0.14666666666666667,
|
| 144 |
+
"grad_norm": 0.45924320816993713,
|
| 145 |
+
"kl": 0.045458984375,
|
| 146 |
+
"learning_rate": 1.4666666666666667e-06,
|
| 147 |
+
"loss": 0.0688,
|
| 148 |
+
"reward": 0.9087500125169754,
|
| 149 |
+
"reward_std": 0.2800120744854212,
|
| 150 |
+
"rewards/accuracy_reward": 0.0662500012665987,
|
| 151 |
+
"rewards/format_reward": 0.8425000071525574,
|
| 152 |
+
"step": 110
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"completion_length": 251.6537540435791,
|
| 156 |
+
"epoch": 0.16,
|
| 157 |
+
"grad_norm": 0.4579772353172302,
|
| 158 |
+
"kl": 0.0559661865234375,
|
| 159 |
+
"learning_rate": 1.6e-06,
|
| 160 |
+
"loss": 0.0552,
|
| 161 |
+
"reward": 0.9850000143051147,
|
| 162 |
+
"reward_std": 0.28530918546020984,
|
| 163 |
+
"rewards/accuracy_reward": 0.11875000353902579,
|
| 164 |
+
"rewards/format_reward": 0.8662500090897083,
|
| 165 |
+
"step": 120
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"completion_length": 285.78625469207765,
|
| 169 |
+
"epoch": 0.17333333333333334,
|
| 170 |
+
"grad_norm": 0.4548390209674835,
|
| 171 |
+
"kl": 0.0518890380859375,
|
| 172 |
+
"learning_rate": 1.7333333333333332e-06,
|
| 173 |
+
"loss": 0.0473,
|
| 174 |
+
"reward": 0.9662500187754631,
|
| 175 |
+
"reward_std": 0.3944980699568987,
|
| 176 |
+
"rewards/accuracy_reward": 0.14875000305473804,
|
| 177 |
+
"rewards/format_reward": 0.8175000086426735,
|
| 178 |
+
"step": 130
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"completion_length": 268.450004196167,
|
| 182 |
+
"epoch": 0.18666666666666668,
|
| 183 |
+
"grad_norm": 0.358254611492157,
|
| 184 |
+
"kl": 0.082470703125,
|
| 185 |
+
"learning_rate": 1.8666666666666667e-06,
|
| 186 |
+
"loss": 0.0507,
|
| 187 |
+
"reward": 1.0162500128149987,
|
| 188 |
+
"reward_std": 0.38786814287304877,
|
| 189 |
+
"rewards/accuracy_reward": 0.17125000292435288,
|
| 190 |
+
"rewards/format_reward": 0.8450000129640103,
|
| 191 |
+
"step": 140
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"completion_length": 304.1125057220459,
|
| 195 |
+
"epoch": 0.2,
|
| 196 |
+
"grad_norm": 4.261535167694092,
|
| 197 |
+
"kl": 0.107891845703125,
|
| 198 |
+
"learning_rate": 2e-06,
|
| 199 |
+
"loss": 0.0398,
|
| 200 |
+
"reward": 1.1762500151991844,
|
| 201 |
+
"reward_std": 0.46659310162067413,
|
| 202 |
+
"rewards/accuracy_reward": 0.2962500025518239,
|
| 203 |
+
"rewards/format_reward": 0.8800000116229058,
|
| 204 |
+
"step": 150
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"completion_length": 284.4462554931641,
|
| 208 |
+
"epoch": 0.21333333333333335,
|
| 209 |
+
"grad_norm": 0.29285335540771484,
|
| 210 |
+
"kl": 0.086627197265625,
|
| 211 |
+
"learning_rate": 2.1333333333333334e-06,
|
| 212 |
+
"loss": 0.0141,
|
| 213 |
+
"reward": 1.3200000196695327,
|
| 214 |
+
"reward_std": 0.4418893948197365,
|
| 215 |
+
"rewards/accuracy_reward": 0.37750000674277545,
|
| 216 |
+
"rewards/format_reward": 0.9425000041723252,
|
| 217 |
+
"step": 160
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"completion_length": 279.2050067901611,
|
| 221 |
+
"epoch": 0.22666666666666666,
|
| 222 |
+
"grad_norm": 0.47264882922172546,
|
| 223 |
+
"kl": 0.100860595703125,
|
| 224 |
+
"learning_rate": 2.266666666666667e-06,
|
| 225 |
+
"loss": 0.051,
|
| 226 |
+
"reward": 1.3650000289082527,
|
| 227 |
+
"reward_std": 0.4196435324847698,
|
| 228 |
+
"rewards/accuracy_reward": 0.4200000060722232,
|
| 229 |
+
"rewards/format_reward": 0.9450000047683715,
|
| 230 |
+
"step": 170
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"completion_length": 266.97375679016113,
|
| 234 |
+
"epoch": 0.24,
|
| 235 |
+
"grad_norm": 0.31524142622947693,
|
| 236 |
+
"kl": 0.1145751953125,
|
| 237 |
+
"learning_rate": 2.4000000000000003e-06,
|
| 238 |
+
"loss": 0.0426,
|
| 239 |
+
"reward": 1.4912500247359275,
|
| 240 |
+
"reward_std": 0.38923392072319984,
|
| 241 |
+
"rewards/accuracy_reward": 0.543750009778887,
|
| 242 |
+
"rewards/format_reward": 0.9475000031292439,
|
| 243 |
+
"step": 180
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"completion_length": 340.537505531311,
|
| 247 |
+
"epoch": 0.25333333333333335,
|
| 248 |
+
"grad_norm": 0.28264713287353516,
|
| 249 |
+
"kl": 0.1277587890625,
|
| 250 |
+
"learning_rate": 2.5333333333333334e-06,
|
| 251 |
+
"loss": 0.0855,
|
| 252 |
+
"reward": 1.2712500244379044,
|
| 253 |
+
"reward_std": 0.49123715460300443,
|
| 254 |
+
"rewards/accuracy_reward": 0.4312500088475645,
|
| 255 |
+
"rewards/format_reward": 0.840000007301569,
|
| 256 |
+
"step": 190
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"completion_length": 298.52000389099123,
|
| 260 |
+
"epoch": 0.26666666666666666,
|
| 261 |
+
"grad_norm": 0.4394519627094269,
|
| 262 |
+
"kl": 0.16021728515625,
|
| 263 |
+
"learning_rate": 2.6666666666666664e-06,
|
| 264 |
+
"loss": 0.1097,
|
| 265 |
+
"reward": 1.2837500274181366,
|
| 266 |
+
"reward_std": 0.5194122649729251,
|
| 267 |
+
"rewards/accuracy_reward": 0.43875000802800057,
|
| 268 |
+
"rewards/format_reward": 0.845000010728836,
|
| 269 |
+
"step": 200
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"completion_length": 337.09625549316405,
|
| 273 |
+
"epoch": 0.28,
|
| 274 |
+
"grad_norm": 0.4397446811199188,
|
| 275 |
+
"kl": 0.286328125,
|
| 276 |
+
"learning_rate": 2.8000000000000003e-06,
|
| 277 |
+
"loss": 0.1787,
|
| 278 |
+
"reward": 1.057500022649765,
|
| 279 |
+
"reward_std": 0.6535363413393498,
|
| 280 |
+
"rewards/accuracy_reward": 0.3850000096485019,
|
| 281 |
+
"rewards/format_reward": 0.6725000105798244,
|
| 282 |
+
"step": 210
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"completion_length": 195.2412536621094,
|
| 286 |
+
"epoch": 0.29333333333333333,
|
| 287 |
+
"grad_norm": 1.9711108207702637,
|
| 288 |
+
"kl": 3.52977294921875,
|
| 289 |
+
"learning_rate": 2.9333333333333333e-06,
|
| 290 |
+
"loss": 0.0607,
|
| 291 |
+
"reward": 1.2225000165402888,
|
| 292 |
+
"reward_std": 0.504400571808219,
|
| 293 |
+
"rewards/accuracy_reward": 0.41500000692903993,
|
| 294 |
+
"rewards/format_reward": 0.8075000129640102,
|
| 295 |
+
"step": 220
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"completion_length": 197.4412525177002,
|
| 299 |
+
"epoch": 0.30666666666666664,
|
| 300 |
+
"grad_norm": 2256.19873046875,
|
| 301 |
+
"kl": 17.518798828125,
|
| 302 |
+
"learning_rate": 2.9999548717196514e-06,
|
| 303 |
+
"loss": 0.5765,
|
| 304 |
+
"reward": 1.3587500154972076,
|
| 305 |
+
"reward_std": 0.4323975473642349,
|
| 306 |
+
"rewards/accuracy_reward": 0.4712500068359077,
|
| 307 |
+
"rewards/format_reward": 0.8875000089406967,
|
| 308 |
+
"step": 230
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"completion_length": 222.5012535095215,
|
| 312 |
+
"epoch": 0.32,
|
| 313 |
+
"grad_norm": 0.370374858379364,
|
| 314 |
+
"kl": 0.28663330078125,
|
| 315 |
+
"learning_rate": 2.9995938617691924e-06,
|
| 316 |
+
"loss": 0.0185,
|
| 317 |
+
"reward": 1.3312500312924385,
|
| 318 |
+
"reward_std": 0.5138044867664575,
|
| 319 |
+
"rewards/accuracy_reward": 0.45125000588595865,
|
| 320 |
+
"rewards/format_reward": 0.8800000086426735,
|
| 321 |
+
"step": 240
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"completion_length": 213.4362533569336,
|
| 325 |
+
"epoch": 0.3333333333333333,
|
| 326 |
+
"grad_norm": 0.3446196913719177,
|
| 327 |
+
"kl": 0.21429443359375,
|
| 328 |
+
"learning_rate": 2.9988719287563454e-06,
|
| 329 |
+
"loss": 0.0129,
|
| 330 |
+
"reward": 1.4750000223517419,
|
| 331 |
+
"reward_std": 0.3717566329985857,
|
| 332 |
+
"rewards/accuracy_reward": 0.5112500058487057,
|
| 333 |
+
"rewards/format_reward": 0.9637500002980233,
|
| 334 |
+
"step": 250
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"completion_length": 252.42875595092772,
|
| 338 |
+
"epoch": 0.3466666666666667,
|
| 339 |
+
"grad_norm": 2.4441771507263184,
|
| 340 |
+
"kl": 1.01444091796875,
|
| 341 |
+
"learning_rate": 2.9977892464363372e-06,
|
| 342 |
+
"loss": 0.0758,
|
| 343 |
+
"reward": 1.4012500166893005,
|
| 344 |
+
"reward_std": 0.4755144312977791,
|
| 345 |
+
"rewards/accuracy_reward": 0.4700000075623393,
|
| 346 |
+
"rewards/format_reward": 0.9312500089406968,
|
| 347 |
+
"step": 260
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"completion_length": 247.25250587463378,
|
| 351 |
+
"epoch": 0.36,
|
| 352 |
+
"grad_norm": 2.5208985805511475,
|
| 353 |
+
"kl": 0.5568603515625,
|
| 354 |
+
"learning_rate": 2.9963460753897363e-06,
|
| 355 |
+
"loss": 0.0401,
|
| 356 |
+
"reward": 1.3375000193715096,
|
| 357 |
+
"reward_std": 0.4566458873450756,
|
| 358 |
+
"rewards/accuracy_reward": 0.4337500057183206,
|
| 359 |
+
"rewards/format_reward": 0.9037500128149987,
|
| 360 |
+
"step": 270
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"completion_length": 246.50625495910646,
|
| 364 |
+
"epoch": 0.37333333333333335,
|
| 365 |
+
"grad_norm": 96.51844024658203,
|
| 366 |
+
"kl": 1.2575439453125,
|
| 367 |
+
"learning_rate": 2.9945427629597305e-06,
|
| 368 |
+
"loss": 0.0839,
|
| 369 |
+
"reward": 1.376250022649765,
|
| 370 |
+
"reward_std": 0.4465434730052948,
|
| 371 |
+
"rewards/accuracy_reward": 0.4450000057928264,
|
| 372 |
+
"rewards/format_reward": 0.9312500059604645,
|
| 373 |
+
"step": 280
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"completion_length": 286.57250423431395,
|
| 377 |
+
"epoch": 0.38666666666666666,
|
| 378 |
+
"grad_norm": 0.3689205050468445,
|
| 379 |
+
"kl": 0.414300537109375,
|
| 380 |
+
"learning_rate": 2.992379743168532e-06,
|
| 381 |
+
"loss": 0.0462,
|
| 382 |
+
"reward": 1.4450000196695327,
|
| 383 |
+
"reward_std": 0.4324021231383085,
|
| 384 |
+
"rewards/accuracy_reward": 0.503750005364418,
|
| 385 |
+
"rewards/format_reward": 0.941250005364418,
|
| 386 |
+
"step": 290
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"completion_length": 332.27125587463377,
|
| 390 |
+
"epoch": 0.4,
|
| 391 |
+
"grad_norm": 0.4576380252838135,
|
| 392 |
+
"kl": 0.3354248046875,
|
| 393 |
+
"learning_rate": 2.989857536612915e-06,
|
| 394 |
+
"loss": 0.0378,
|
| 395 |
+
"reward": 1.4400000303983689,
|
| 396 |
+
"reward_std": 0.39175261445343496,
|
| 397 |
+
"rewards/accuracy_reward": 0.4987500077113509,
|
| 398 |
+
"rewards/format_reward": 0.941250005364418,
|
| 399 |
+
"step": 300
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"completion_length": 318.8962543487549,
|
| 403 |
+
"epoch": 0.41333333333333333,
|
| 404 |
+
"grad_norm": 0.44957035779953003,
|
| 405 |
+
"kl": 1.1047119140625,
|
| 406 |
+
"learning_rate": 2.9869767503389175e-06,
|
| 407 |
+
"loss": 0.0515,
|
| 408 |
+
"reward": 1.4150000244379044,
|
| 409 |
+
"reward_std": 0.4395812951028347,
|
| 410 |
+
"rewards/accuracy_reward": 0.4762500121258199,
|
| 411 |
+
"rewards/format_reward": 0.9387500062584877,
|
| 412 |
+
"step": 310
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"completion_length": 293.3062553405762,
|
| 416 |
+
"epoch": 0.4266666666666667,
|
| 417 |
+
"grad_norm": 0.47710099816322327,
|
| 418 |
+
"kl": 8.84039306640625,
|
| 419 |
+
"learning_rate": 2.983738077695741e-06,
|
| 420 |
+
"loss": 0.4032,
|
| 421 |
+
"reward": 1.4200000286102294,
|
| 422 |
+
"reward_std": 0.40100472904741763,
|
| 423 |
+
"rewards/accuracy_reward": 0.4850000117905438,
|
| 424 |
+
"rewards/format_reward": 0.9350000098347664,
|
| 425 |
+
"step": 320
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"completion_length": 311.5937572479248,
|
| 429 |
+
"epoch": 0.44,
|
| 430 |
+
"grad_norm": 4.005710124969482,
|
| 431 |
+
"kl": 9.49320068359375,
|
| 432 |
+
"learning_rate": 2.980142298168869e-06,
|
| 433 |
+
"loss": 0.5626,
|
| 434 |
+
"reward": 1.4375000283122064,
|
| 435 |
+
"reward_std": 0.46121844090521336,
|
| 436 |
+
"rewards/accuracy_reward": 0.5175000098533928,
|
| 437 |
+
"rewards/format_reward": 0.9200000077486038,
|
| 438 |
+
"step": 330
|
| 439 |
+
},
|
| 440 |
+
{
|
| 441 |
+
"completion_length": 313.74875526428224,
|
| 442 |
+
"epoch": 0.4533333333333333,
|
| 443 |
+
"grad_norm": 10.983561515808105,
|
| 444 |
+
"kl": 0.34615478515625,
|
| 445 |
+
"learning_rate": 2.976190277192465e-06,
|
| 446 |
+
"loss": 0.0495,
|
| 447 |
+
"reward": 1.4325000122189522,
|
| 448 |
+
"reward_std": 0.4127622898668051,
|
| 449 |
+
"rewards/accuracy_reward": 0.5262500100769103,
|
| 450 |
+
"rewards/format_reward": 0.9062500059604645,
|
| 451 |
+
"step": 340
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"completion_length": 317.42875480651855,
|
| 455 |
+
"epoch": 0.4666666666666667,
|
| 456 |
+
"grad_norm": 1.4480901956558228,
|
| 457 |
+
"kl": 16.34658203125,
|
| 458 |
+
"learning_rate": 2.971882965941077e-06,
|
| 459 |
+
"loss": 0.7464,
|
| 460 |
+
"reward": 1.4687500238418578,
|
| 461 |
+
"reward_std": 0.44693985804915426,
|
| 462 |
+
"rewards/accuracy_reward": 0.5800000098533928,
|
| 463 |
+
"rewards/format_reward": 0.8887500122189522,
|
| 464 |
+
"step": 350
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"completion_length": 345.25625648498533,
|
| 468 |
+
"epoch": 0.48,
|
| 469 |
+
"grad_norm": 0.3819202184677124,
|
| 470 |
+
"kl": 0.4673583984375,
|
| 471 |
+
"learning_rate": 2.9672214011007086e-06,
|
| 472 |
+
"loss": 0.0278,
|
| 473 |
+
"reward": 1.3925000250339508,
|
| 474 |
+
"reward_std": 0.36666983254253865,
|
| 475 |
+
"rewards/accuracy_reward": 0.45375000443309543,
|
| 476 |
+
"rewards/format_reward": 0.9387500062584877,
|
| 477 |
+
"step": 360
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"completion_length": 308.32375564575193,
|
| 481 |
+
"epoch": 0.49333333333333335,
|
| 482 |
+
"grad_norm": 0.812126874923706,
|
| 483 |
+
"kl": 0.8212890625,
|
| 484 |
+
"learning_rate": 2.9622067046193085e-06,
|
| 485 |
+
"loss": 0.0635,
|
| 486 |
+
"reward": 1.4100000277161597,
|
| 487 |
+
"reward_std": 0.420729149505496,
|
| 488 |
+
"rewards/accuracy_reward": 0.46875001015141604,
|
| 489 |
+
"rewards/format_reward": 0.9412500023841858,
|
| 490 |
+
"step": 370
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"completion_length": 298.4312526702881,
|
| 494 |
+
"epoch": 0.5066666666666667,
|
| 495 |
+
"grad_norm": 1.2376179695129395,
|
| 496 |
+
"kl": 1.26268310546875,
|
| 497 |
+
"learning_rate": 2.956840083436741e-06,
|
| 498 |
+
"loss": 0.0954,
|
| 499 |
+
"reward": 1.471250019967556,
|
| 500 |
+
"reward_std": 0.4468890752643347,
|
| 501 |
+
"rewards/accuracy_reward": 0.5375000098720193,
|
| 502 |
+
"rewards/format_reward": 0.933750006556511,
|
| 503 |
+
"step": 380
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"completion_length": 277.4425052642822,
|
| 507 |
+
"epoch": 0.52,
|
| 508 |
+
"grad_norm": 1.022598147392273,
|
| 509 |
+
"kl": 2.3487060546875,
|
| 510 |
+
"learning_rate": 2.951122829194296e-06,
|
| 511 |
+
"loss": 0.1583,
|
| 512 |
+
"reward": 1.3462500274181366,
|
| 513 |
+
"reward_std": 0.5475293599069119,
|
| 514 |
+
"rewards/accuracy_reward": 0.4762500089593232,
|
| 515 |
+
"rewards/format_reward": 0.870000010728836,
|
| 516 |
+
"step": 390
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
"completion_length": 311.357506942749,
|
| 520 |
+
"epoch": 0.5333333333333333,
|
| 521 |
+
"grad_norm": 0.5792402625083923,
|
| 522 |
+
"kl": 0.7629638671875,
|
| 523 |
+
"learning_rate": 2.9450563179238205e-06,
|
| 524 |
+
"loss": 0.1346,
|
| 525 |
+
"reward": 1.3450000122189523,
|
| 526 |
+
"reward_std": 0.5392270684242249,
|
| 527 |
+
"rewards/accuracy_reward": 0.4387500088661909,
|
| 528 |
+
"rewards/format_reward": 0.9062500074505806,
|
| 529 |
+
"step": 400
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"completion_length": 268.91125507354735,
|
| 533 |
+
"epoch": 0.5466666666666666,
|
| 534 |
+
"grad_norm": 2.355006694793701,
|
| 535 |
+
"kl": 10.3116455078125,
|
| 536 |
+
"learning_rate": 2.938642009716531e-06,
|
| 537 |
+
"loss": 0.7061,
|
| 538 |
+
"reward": 1.411250014603138,
|
| 539 |
+
"reward_std": 0.44688397236168387,
|
| 540 |
+
"rewards/accuracy_reward": 0.48625000976026056,
|
| 541 |
+
"rewards/format_reward": 0.9250000059604645,
|
| 542 |
+
"step": 410
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"completion_length": 330.4012561798096,
|
| 546 |
+
"epoch": 0.56,
|
| 547 |
+
"grad_norm": 1.2017070055007935,
|
| 548 |
+
"kl": 2.034033203125,
|
| 549 |
+
"learning_rate": 2.9318814483715983e-06,
|
| 550 |
+
"loss": 0.3712,
|
| 551 |
+
"reward": 1.37750001847744,
|
| 552 |
+
"reward_std": 0.5567759402096272,
|
| 553 |
+
"rewards/accuracy_reward": 0.5162500075995922,
|
| 554 |
+
"rewards/format_reward": 0.8612500131130219,
|
| 555 |
+
"step": 420
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"completion_length": 262.88875579833984,
|
| 559 |
+
"epoch": 0.5733333333333334,
|
| 560 |
+
"grad_norm": 8.315053939819336,
|
| 561 |
+
"kl": 1.03427734375,
|
| 562 |
+
"learning_rate": 2.924776261024586e-06,
|
| 563 |
+
"loss": 0.1372,
|
| 564 |
+
"reward": 1.5275000169873238,
|
| 565 |
+
"reward_std": 0.4006519988179207,
|
| 566 |
+
"rewards/accuracy_reward": 0.5787500092759729,
|
| 567 |
+
"rewards/format_reward": 0.948750002682209,
|
| 568 |
+
"step": 430
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"completion_length": 250.29125347137452,
|
| 572 |
+
"epoch": 0.5866666666666667,
|
| 573 |
+
"grad_norm": 15.071596145629883,
|
| 574 |
+
"kl": 1.954150390625,
|
| 575 |
+
"learning_rate": 2.917328157755832e-06,
|
| 576 |
+
"loss": 0.1571,
|
| 577 |
+
"reward": 1.378750017285347,
|
| 578 |
+
"reward_std": 0.42997160777449606,
|
| 579 |
+
"rewards/accuracy_reward": 0.5175000073388218,
|
| 580 |
+
"rewards/format_reward": 0.8612500071525574,
|
| 581 |
+
"step": 440
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"completion_length": 267.2262548446655,
|
| 585 |
+
"epoch": 0.6,
|
| 586 |
+
"grad_norm": 4.3944549560546875,
|
| 587 |
+
"kl": 3.891845703125,
|
| 588 |
+
"learning_rate": 2.9095389311788626e-06,
|
| 589 |
+
"loss": 0.2468,
|
| 590 |
+
"reward": 1.2350000157952308,
|
| 591 |
+
"reward_std": 0.5935393430292606,
|
| 592 |
+
"rewards/accuracy_reward": 0.48000000631436707,
|
| 593 |
+
"rewards/format_reward": 0.7550000131130219,
|
| 594 |
+
"step": 450
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"completion_length": 232.88375339508056,
|
| 598 |
+
"epoch": 0.6133333333333333,
|
| 599 |
+
"grad_norm": 10.471932411193848,
|
| 600 |
+
"kl": 1.11915283203125,
|
| 601 |
+
"learning_rate": 2.9014104560089465e-06,
|
| 602 |
+
"loss": 0.1208,
|
| 603 |
+
"reward": 1.4125000298023225,
|
| 604 |
+
"reward_std": 0.4672528047114611,
|
| 605 |
+
"rewards/accuracy_reward": 0.5075000061653554,
|
| 606 |
+
"rewards/format_reward": 0.9050000071525574,
|
| 607 |
+
"step": 460
|
| 608 |
+
},
|
| 609 |
+
{
|
| 610 |
+
"completion_length": 266.50000495910643,
|
| 611 |
+
"epoch": 0.6266666666666667,
|
| 612 |
+
"grad_norm": 0.3841674029827118,
|
| 613 |
+
"kl": 1.0602783203125,
|
| 614 |
+
"learning_rate": 2.8929446886118866e-06,
|
| 615 |
+
"loss": 0.2335,
|
| 616 |
+
"reward": 1.4612500220537186,
|
| 617 |
+
"reward_std": 0.42485330663621423,
|
| 618 |
+
"rewards/accuracy_reward": 0.541250011883676,
|
| 619 |
+
"rewards/format_reward": 0.9200000077486038,
|
| 620 |
+
"step": 470
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"completion_length": 256.0362522125244,
|
| 624 |
+
"epoch": 0.64,
|
| 625 |
+
"grad_norm": 0.425624281167984,
|
| 626 |
+
"kl": 0.7212890625,
|
| 627 |
+
"learning_rate": 2.8841436665331635e-06,
|
| 628 |
+
"loss": 0.1887,
|
| 629 |
+
"reward": 1.3937500238418579,
|
| 630 |
+
"reward_std": 0.48963438235223294,
|
| 631 |
+
"rewards/accuracy_reward": 0.4762500075623393,
|
| 632 |
+
"rewards/format_reward": 0.9175000041723251,
|
| 633 |
+
"step": 480
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"completion_length": 278.662505531311,
|
| 637 |
+
"epoch": 0.6533333333333333,
|
| 638 |
+
"grad_norm": 0.6774723529815674,
|
| 639 |
+
"kl": 0.314697265625,
|
| 640 |
+
"learning_rate": 2.875009508007535e-06,
|
| 641 |
+
"loss": 0.2242,
|
| 642 |
+
"reward": 1.3637500166893006,
|
| 643 |
+
"reward_std": 0.5403582151979208,
|
| 644 |
+
"rewards/accuracy_reward": 0.5012500101700426,
|
| 645 |
+
"rewards/format_reward": 0.8625000104308128,
|
| 646 |
+
"step": 490
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"completion_length": 295.65125541687013,
|
| 650 |
+
"epoch": 0.6666666666666666,
|
| 651 |
+
"grad_norm": 1.2344285249710083,
|
| 652 |
+
"kl": 0.48665771484375,
|
| 653 |
+
"learning_rate": 2.86554441144922e-06,
|
| 654 |
+
"loss": 0.2865,
|
| 655 |
+
"reward": 1.4550000220537185,
|
| 656 |
+
"reward_std": 0.4966724131256342,
|
| 657 |
+
"rewards/accuracy_reward": 0.5925000066868961,
|
| 658 |
+
"rewards/format_reward": 0.8625000059604645,
|
| 659 |
+
"step": 500
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"completion_length": 309.08625679016114,
|
| 663 |
+
"epoch": 0.68,
|
| 664 |
+
"grad_norm": 16.80157470703125,
|
| 665 |
+
"kl": 2.29215087890625,
|
| 666 |
+
"learning_rate": 2.855750654922781e-06,
|
| 667 |
+
"loss": 0.4345,
|
| 668 |
+
"reward": 1.4012500315904617,
|
| 669 |
+
"reward_std": 0.5136609964072705,
|
| 670 |
+
"rewards/accuracy_reward": 0.556250006146729,
|
| 671 |
+
"rewards/format_reward": 0.8450000122189522,
|
| 672 |
+
"step": 510
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"completion_length": 320.7975061416626,
|
| 676 |
+
"epoch": 0.6933333333333334,
|
| 677 |
+
"grad_norm": 6.8107590675354,
|
| 678 |
+
"kl": 2.5089599609375,
|
| 679 |
+
"learning_rate": 2.84563059559484e-06,
|
| 680 |
+
"loss": 0.5524,
|
| 681 |
+
"reward": 1.2937500305473804,
|
| 682 |
+
"reward_std": 0.5724672272801399,
|
| 683 |
+
"rewards/accuracy_reward": 0.49500000951811673,
|
| 684 |
+
"rewards/format_reward": 0.7987500131130219,
|
| 685 |
+
"step": 520
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"completion_length": 312.92125396728517,
|
| 689 |
+
"epoch": 0.7066666666666667,
|
| 690 |
+
"grad_norm": 1.1629796028137207,
|
| 691 |
+
"kl": 1.2917724609375,
|
| 692 |
+
"learning_rate": 2.8351866691667543e-06,
|
| 693 |
+
"loss": 0.3865,
|
| 694 |
+
"reward": 1.1650000177323818,
|
| 695 |
+
"reward_std": 0.5869733650237322,
|
| 696 |
+
"rewards/accuracy_reward": 0.39125000657513737,
|
| 697 |
+
"rewards/format_reward": 0.7737500131130218,
|
| 698 |
+
"step": 530
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"completion_length": 264.66250495910646,
|
| 702 |
+
"epoch": 0.72,
|
| 703 |
+
"grad_norm": 1.581681251525879,
|
| 704 |
+
"kl": 1.5130859375,
|
| 705 |
+
"learning_rate": 2.8244213892883906e-06,
|
| 706 |
+
"loss": 0.3496,
|
| 707 |
+
"reward": 1.4375000178813935,
|
| 708 |
+
"reward_std": 0.45811997428536416,
|
| 709 |
+
"rewards/accuracy_reward": 0.5450000078417361,
|
| 710 |
+
"rewards/format_reward": 0.8925000086426735,
|
| 711 |
+
"step": 540
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"completion_length": 299.5112560272217,
|
| 715 |
+
"epoch": 0.7333333333333333,
|
| 716 |
+
"grad_norm": 1.8020122051239014,
|
| 717 |
+
"kl": 1.855810546875,
|
| 718 |
+
"learning_rate": 2.8133373469531365e-06,
|
| 719 |
+
"loss": 0.4243,
|
| 720 |
+
"reward": 1.37500002682209,
|
| 721 |
+
"reward_std": 0.4744249366223812,
|
| 722 |
+
"rewards/accuracy_reward": 0.5300000084564089,
|
| 723 |
+
"rewards/format_reward": 0.845000010728836,
|
| 724 |
+
"step": 550
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"completion_length": 279.5200065612793,
|
| 728 |
+
"epoch": 0.7466666666666667,
|
| 729 |
+
"grad_norm": 1.1065877676010132,
|
| 730 |
+
"kl": 1.2305419921875,
|
| 731 |
+
"learning_rate": 2.801937209874301e-06,
|
| 732 |
+
"loss": 0.3489,
|
| 733 |
+
"reward": 1.3450000271201135,
|
| 734 |
+
"reward_std": 0.48592774122953414,
|
| 735 |
+
"rewards/accuracy_reward": 0.4600000066682696,
|
| 736 |
+
"rewards/format_reward": 0.8850000105798245,
|
| 737 |
+
"step": 560
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"completion_length": 262.961252784729,
|
| 741 |
+
"epoch": 0.76,
|
| 742 |
+
"grad_norm": 2.5658416748046875,
|
| 743 |
+
"kl": 0.5228271484375,
|
| 744 |
+
"learning_rate": 2.7902237218430485e-06,
|
| 745 |
+
"loss": 0.2554,
|
| 746 |
+
"reward": 1.4400000259280206,
|
| 747 |
+
"reward_std": 0.437805675342679,
|
| 748 |
+
"rewards/accuracy_reward": 0.5325000083073974,
|
| 749 |
+
"rewards/format_reward": 0.90750000923872,
|
| 750 |
+
"step": 570
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"completion_length": 393.1900066375732,
|
| 754 |
+
"epoch": 0.7733333333333333,
|
| 755 |
+
"grad_norm": 3.0309977531433105,
|
| 756 |
+
"kl": 0.73193359375,
|
| 757 |
+
"learning_rate": 2.778199702068017e-06,
|
| 758 |
+
"loss": 0.4131,
|
| 759 |
+
"reward": 1.1987500235438346,
|
| 760 |
+
"reward_std": 0.603440997377038,
|
| 761 |
+
"rewards/accuracy_reward": 0.46500000907108185,
|
| 762 |
+
"rewards/format_reward": 0.7337500136345625,
|
| 763 |
+
"step": 580
|
| 764 |
+
},
|
| 765 |
+
{
|
| 766 |
+
"completion_length": 356.66125717163084,
|
| 767 |
+
"epoch": 0.7866666666666666,
|
| 768 |
+
"grad_norm": 4.907287120819092,
|
| 769 |
+
"kl": 15.196728515625,
|
| 770 |
+
"learning_rate": 2.7658680444967964e-06,
|
| 771 |
+
"loss": 1.5553,
|
| 772 |
+
"reward": 1.2862500250339508,
|
| 773 |
+
"reward_std": 0.5923882402479649,
|
| 774 |
+
"rewards/accuracy_reward": 0.5062500080093741,
|
| 775 |
+
"rewards/format_reward": 0.7800000138580799,
|
| 776 |
+
"step": 590
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"completion_length": 308.2250047683716,
|
| 780 |
+
"epoch": 0.8,
|
| 781 |
+
"grad_norm": 3.880446434020996,
|
| 782 |
+
"kl": 1.6797119140625,
|
| 783 |
+
"learning_rate": 2.753231717119405e-06,
|
| 784 |
+
"loss": 0.3899,
|
| 785 |
+
"reward": 1.3175000190734862,
|
| 786 |
+
"reward_std": 0.4703429743647575,
|
| 787 |
+
"rewards/accuracy_reward": 0.47125000776723025,
|
| 788 |
+
"rewards/format_reward": 0.8462500080466271,
|
| 789 |
+
"step": 600
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"completion_length": 272.85125598907473,
|
| 793 |
+
"epoch": 0.8133333333333334,
|
| 794 |
+
"grad_norm": 7.690130233764648,
|
| 795 |
+
"kl": 2.55137939453125,
|
| 796 |
+
"learning_rate": 2.740293761253956e-06,
|
| 797 |
+
"loss": 0.4518,
|
| 798 |
+
"reward": 1.413750021159649,
|
| 799 |
+
"reward_std": 0.4325053282082081,
|
| 800 |
+
"rewards/accuracy_reward": 0.531250010151416,
|
| 801 |
+
"rewards/format_reward": 0.8825000062584877,
|
| 802 |
+
"step": 610
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"completion_length": 297.4387529373169,
|
| 806 |
+
"epoch": 0.8266666666666667,
|
| 807 |
+
"grad_norm": 2.0755786895751953,
|
| 808 |
+
"kl": 2.9087890625,
|
| 809 |
+
"learning_rate": 2.7270572908146716e-06,
|
| 810 |
+
"loss": 0.4945,
|
| 811 |
+
"reward": 1.3737500190734864,
|
| 812 |
+
"reward_std": 0.48490689508616924,
|
| 813 |
+
"rewards/accuracy_reward": 0.5175000118091703,
|
| 814 |
+
"rewards/format_reward": 0.8562500081956387,
|
| 815 |
+
"step": 620
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"completion_length": 288.5512563705444,
|
| 819 |
+
"epoch": 0.84,
|
| 820 |
+
"grad_norm": 2.110800266265869,
|
| 821 |
+
"kl": 4.269287109375,
|
| 822 |
+
"learning_rate": 2.713525491562421e-06,
|
| 823 |
+
"loss": 0.6393,
|
| 824 |
+
"reward": 1.3537500187754632,
|
| 825 |
+
"reward_std": 0.5092445306479931,
|
| 826 |
+
"rewards/accuracy_reward": 0.4800000081770122,
|
| 827 |
+
"rewards/format_reward": 0.8737500131130218,
|
| 828 |
+
"step": 630
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"completion_length": 273.556254196167,
|
| 832 |
+
"epoch": 0.8533333333333334,
|
| 833 |
+
"grad_norm": 2.306751251220703,
|
| 834 |
+
"kl": 2.8123046875,
|
| 835 |
+
"learning_rate": 2.699701620337974e-06,
|
| 836 |
+
"loss": 0.4281,
|
| 837 |
+
"reward": 1.3900000244379043,
|
| 838 |
+
"reward_std": 0.48922200947999955,
|
| 839 |
+
"rewards/accuracy_reward": 0.4987500078044832,
|
| 840 |
+
"rewards/format_reward": 0.8912500098347664,
|
| 841 |
+
"step": 640
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"completion_length": 273.3600038528442,
|
| 845 |
+
"epoch": 0.8666666666666667,
|
| 846 |
+
"grad_norm": 3.8477585315704346,
|
| 847 |
+
"kl": 4.17413330078125,
|
| 848 |
+
"learning_rate": 2.685589004278139e-06,
|
| 849 |
+
"loss": 0.4829,
|
| 850 |
+
"reward": 1.2900000154972076,
|
| 851 |
+
"reward_std": 0.5038297042250633,
|
| 852 |
+
"rewards/accuracy_reward": 0.4262500065378845,
|
| 853 |
+
"rewards/format_reward": 0.8637500092387199,
|
| 854 |
+
"step": 650
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"completion_length": 209.00375442504884,
|
| 858 |
+
"epoch": 0.88,
|
| 859 |
+
"grad_norm": 0.8722585439682007,
|
| 860 |
+
"kl": 2.2757568359375,
|
| 861 |
+
"learning_rate": 2.671191040014989e-06,
|
| 862 |
+
"loss": 0.2218,
|
| 863 |
+
"reward": 1.4350000306963921,
|
| 864 |
+
"reward_std": 0.4456099320203066,
|
| 865 |
+
"rewards/accuracy_reward": 0.5400000099092722,
|
| 866 |
+
"rewards/format_reward": 0.8950000107288361,
|
| 867 |
+
"step": 660
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"completion_length": 210.77125377655028,
|
| 871 |
+
"epoch": 0.8933333333333333,
|
| 872 |
+
"grad_norm": 19.34569549560547,
|
| 873 |
+
"kl": 2.20546875,
|
| 874 |
+
"learning_rate": 2.656511192858356e-06,
|
| 875 |
+
"loss": 0.1753,
|
| 876 |
+
"reward": 1.536250014603138,
|
| 877 |
+
"reward_std": 0.34286502450704576,
|
| 878 |
+
"rewards/accuracy_reward": 0.6000000078231096,
|
| 879 |
+
"rewards/format_reward": 0.9362500041723252,
|
| 880 |
+
"step": 670
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"completion_length": 215.156254196167,
|
| 884 |
+
"epoch": 0.9066666666666666,
|
| 885 |
+
"grad_norm": 1.1418198347091675,
|
| 886 |
+
"kl": 1.42802734375,
|
| 887 |
+
"learning_rate": 2.641552995961801e-06,
|
| 888 |
+
"loss": 0.1849,
|
| 889 |
+
"reward": 1.4125000208616256,
|
| 890 |
+
"reward_std": 0.4128339193761349,
|
| 891 |
+
"rewards/accuracy_reward": 0.4987500081770122,
|
| 892 |
+
"rewards/format_reward": 0.9137500122189521,
|
| 893 |
+
"step": 680
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"completion_length": 203.80875244140626,
|
| 897 |
+
"epoch": 0.92,
|
| 898 |
+
"grad_norm": 1.1534955501556396,
|
| 899 |
+
"kl": 1.554296875,
|
| 900 |
+
"learning_rate": 2.626320049472249e-06,
|
| 901 |
+
"loss": 0.1974,
|
| 902 |
+
"reward": 1.4050000324845313,
|
| 903 |
+
"reward_std": 0.46511752642691134,
|
| 904 |
+
"rewards/accuracy_reward": 0.4950000086799264,
|
| 905 |
+
"rewards/format_reward": 0.910000005364418,
|
| 906 |
+
"step": 690
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"completion_length": 229.41625385284425,
|
| 910 |
+
"epoch": 0.9333333333333333,
|
| 911 |
+
"grad_norm": 0.6829231977462769,
|
| 912 |
+
"kl": 1.338916015625,
|
| 913 |
+
"learning_rate": 2.610816019663507e-06,
|
| 914 |
+
"loss": 0.1411,
|
| 915 |
+
"reward": 1.4262500196695327,
|
| 916 |
+
"reward_std": 0.4427020225673914,
|
| 917 |
+
"rewards/accuracy_reward": 0.5125000110827387,
|
| 918 |
+
"rewards/format_reward": 0.9137500077486038,
|
| 919 |
+
"step": 700
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"completion_length": 227.5175048828125,
|
| 923 |
+
"epoch": 0.9466666666666667,
|
| 924 |
+
"grad_norm": 3.9809014797210693,
|
| 925 |
+
"kl": 0.76220703125,
|
| 926 |
+
"learning_rate": 2.595044638053862e-06,
|
| 927 |
+
"loss": 0.0753,
|
| 928 |
+
"reward": 1.5462500333786011,
|
| 929 |
+
"reward_std": 0.43644947446882726,
|
| 930 |
+
"rewards/accuracy_reward": 0.5962500106543303,
|
| 931 |
+
"rewards/format_reward": 0.9500000029802322,
|
| 932 |
+
"step": 710
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"completion_length": 211.47125434875488,
|
| 936 |
+
"epoch": 0.96,
|
| 937 |
+
"grad_norm": 1.0556763410568237,
|
| 938 |
+
"kl": 0.74736328125,
|
| 939 |
+
"learning_rate": 2.5790097005079765e-06,
|
| 940 |
+
"loss": 0.0787,
|
| 941 |
+
"reward": 1.537500023841858,
|
| 942 |
+
"reward_std": 0.36086434237658976,
|
| 943 |
+
"rewards/accuracy_reward": 0.58500001039356,
|
| 944 |
+
"rewards/format_reward": 0.9525000035762787,
|
| 945 |
+
"step": 720
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"completion_length": 275.242505645752,
|
| 949 |
+
"epoch": 0.9733333333333334,
|
| 950 |
+
"grad_norm": 0.5037354826927185,
|
| 951 |
+
"kl": 1.3829833984375,
|
| 952 |
+
"learning_rate": 2.5627150663233e-06,
|
| 953 |
+
"loss": 0.2147,
|
| 954 |
+
"reward": 1.410000029206276,
|
| 955 |
+
"reward_std": 0.4641982387751341,
|
| 956 |
+
"rewards/accuracy_reward": 0.518750009406358,
|
| 957 |
+
"rewards/format_reward": 0.8912500098347664,
|
| 958 |
+
"step": 730
|
| 959 |
+
},
|
| 960 |
+
{
|
| 961 |
+
"completion_length": 230.93375358581542,
|
| 962 |
+
"epoch": 0.9866666666666667,
|
| 963 |
+
"grad_norm": 0.47338035702705383,
|
| 964 |
+
"kl": 0.36016845703125,
|
| 965 |
+
"learning_rate": 2.5461646573012073e-06,
|
| 966 |
+
"loss": 0.0876,
|
| 967 |
+
"reward": 1.560000017285347,
|
| 968 |
+
"reward_std": 0.3064346365630627,
|
| 969 |
+
"rewards/accuracy_reward": 0.5987500073388219,
|
| 970 |
+
"rewards/format_reward": 0.9612500011920929,
|
| 971 |
+
"step": 740
|
| 972 |
+
},
|
| 973 |
+
{
|
| 974 |
+
"completion_length": 253.68500442504882,
|
| 975 |
+
"epoch": 1.0,
|
| 976 |
+
"grad_norm": 1.1472781896591187,
|
| 977 |
+
"kl": 0.9532470703125,
|
| 978 |
+
"learning_rate": 2.529362456803101e-06,
|
| 979 |
+
"loss": 0.1619,
|
| 980 |
+
"reward": 1.4637500196695328,
|
| 981 |
+
"reward_std": 0.4234457302838564,
|
| 982 |
+
"rewards/accuracy_reward": 0.5312500048428774,
|
| 983 |
+
"rewards/format_reward": 0.9325000002980233,
|
| 984 |
+
"step": 750
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"completion_length": 231.0400037765503,
|
| 988 |
+
"epoch": 1.0133333333333334,
|
| 989 |
+
"grad_norm": 0.6581693887710571,
|
| 990 |
+
"kl": 0.7316162109375,
|
| 991 |
+
"learning_rate": 2.5123125087916918e-06,
|
| 992 |
+
"loss": 0.1485,
|
| 993 |
+
"reward": 1.4725000202655791,
|
| 994 |
+
"reward_std": 0.39589033350348474,
|
| 995 |
+
"rewards/accuracy_reward": 0.5262500112876296,
|
| 996 |
+
"rewards/format_reward": 0.9462500065565109,
|
| 997 |
+
"step": 760
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"completion_length": 258.4175052642822,
|
| 1001 |
+
"epoch": 1.0266666666666666,
|
| 1002 |
+
"grad_norm": 0.7054517269134521,
|
| 1003 |
+
"kl": 0.7291259765625,
|
| 1004 |
+
"learning_rate": 2.495018916857696e-06,
|
| 1005 |
+
"loss": 0.2479,
|
| 1006 |
+
"reward": 1.4350000232458116,
|
| 1007 |
+
"reward_std": 0.46736107058823106,
|
| 1008 |
+
"rewards/accuracy_reward": 0.5350000127218664,
|
| 1009 |
+
"rewards/format_reward": 0.9000000074505806,
|
| 1010 |
+
"step": 770
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"completion_length": 262.02250385284424,
|
| 1014 |
+
"epoch": 1.04,
|
| 1015 |
+
"grad_norm": 0.44452065229415894,
|
| 1016 |
+
"kl": 0.6681884765625,
|
| 1017 |
+
"learning_rate": 2.477485843232183e-06,
|
| 1018 |
+
"loss": 0.2143,
|
| 1019 |
+
"reward": 1.4725000143051148,
|
| 1020 |
+
"reward_std": 0.4894147712737322,
|
| 1021 |
+
"rewards/accuracy_reward": 0.5600000077858567,
|
| 1022 |
+
"rewards/format_reward": 0.9125000074505806,
|
| 1023 |
+
"step": 780
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"completion_length": 225.12500190734863,
|
| 1027 |
+
"epoch": 1.0533333333333332,
|
| 1028 |
+
"grad_norm": 0.4003940224647522,
|
| 1029 |
+
"kl": 0.526318359375,
|
| 1030 |
+
"learning_rate": 2.4597175077848023e-06,
|
| 1031 |
+
"loss": 0.0642,
|
| 1032 |
+
"reward": 1.5487500220537185,
|
| 1033 |
+
"reward_std": 0.3219704765826464,
|
| 1034 |
+
"rewards/accuracy_reward": 0.5812500060535968,
|
| 1035 |
+
"rewards/format_reward": 0.9674999997019768,
|
| 1036 |
+
"step": 790
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"completion_length": 271.36250534057615,
|
| 1040 |
+
"epoch": 1.0666666666666667,
|
| 1041 |
+
"grad_norm": 2.0866036415100098,
|
| 1042 |
+
"kl": 0.4521728515625,
|
| 1043 |
+
"learning_rate": 2.441718187008148e-06,
|
| 1044 |
+
"loss": 0.1265,
|
| 1045 |
+
"reward": 1.448750016093254,
|
| 1046 |
+
"reward_std": 0.4373233333230019,
|
| 1047 |
+
"rewards/accuracy_reward": 0.5062500108033419,
|
| 1048 |
+
"rewards/format_reward": 0.9425000041723252,
|
| 1049 |
+
"step": 800
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"completion_length": 251.02625427246093,
|
| 1053 |
+
"epoch": 1.08,
|
| 1054 |
+
"grad_norm": 0.5189586877822876,
|
| 1055 |
+
"kl": 0.80755615234375,
|
| 1056 |
+
"learning_rate": 2.4234922129884873e-06,
|
| 1057 |
+
"loss": 0.1842,
|
| 1058 |
+
"reward": 1.4925000175833703,
|
| 1059 |
+
"reward_std": 0.41841145791113377,
|
| 1060 |
+
"rewards/accuracy_reward": 0.5675000082701445,
|
| 1061 |
+
"rewards/format_reward": 0.9250000044703484,
|
| 1062 |
+
"step": 810
|
| 1063 |
+
},
|
| 1064 |
+
{
|
| 1065 |
+
"completion_length": 252.2237548828125,
|
| 1066 |
+
"epoch": 1.0933333333333333,
|
| 1067 |
+
"grad_norm": 0.30723270773887634,
|
| 1068 |
+
"kl": 0.4115234375,
|
| 1069 |
+
"learning_rate": 2.405043972363114e-06,
|
| 1070 |
+
"loss": 0.1354,
|
| 1071 |
+
"reward": 1.4812500208616257,
|
| 1072 |
+
"reward_std": 0.39995415285229685,
|
| 1073 |
+
"rewards/accuracy_reward": 0.5387500130571425,
|
| 1074 |
+
"rewards/format_reward": 0.9425000056624413,
|
| 1075 |
+
"step": 820
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"completion_length": 259.47125205993655,
|
| 1079 |
+
"epoch": 1.1066666666666667,
|
| 1080 |
+
"grad_norm": 0.6361457705497742,
|
| 1081 |
+
"kl": 0.4533203125,
|
| 1082 |
+
"learning_rate": 2.386377905264567e-06,
|
| 1083 |
+
"loss": 0.1431,
|
| 1084 |
+
"reward": 1.4937500223517417,
|
| 1085 |
+
"reward_std": 0.4016253810375929,
|
| 1086 |
+
"rewards/accuracy_reward": 0.5575000120326876,
|
| 1087 |
+
"rewards/format_reward": 0.9362500071525574,
|
| 1088 |
+
"step": 830
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"completion_length": 273.63625564575193,
|
| 1092 |
+
"epoch": 1.12,
|
| 1093 |
+
"grad_norm": 1.0046416521072388,
|
| 1094 |
+
"kl": 0.51337890625,
|
| 1095 |
+
"learning_rate": 2.36749850425198e-06,
|
| 1096 |
+
"loss": 0.1486,
|
| 1097 |
+
"reward": 1.4950000181794167,
|
| 1098 |
+
"reward_std": 0.39630253836512563,
|
| 1099 |
+
"rewards/accuracy_reward": 0.5575000086799264,
|
| 1100 |
+
"rewards/format_reward": 0.9375000059604645,
|
| 1101 |
+
"step": 840
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"completion_length": 274.59875602722167,
|
| 1105 |
+
"epoch": 1.1333333333333333,
|
| 1106 |
+
"grad_norm": 1.476180076599121,
|
| 1107 |
+
"kl": 0.6783447265625,
|
| 1108 |
+
"learning_rate": 2.348410313229808e-06,
|
| 1109 |
+
"loss": 0.1884,
|
| 1110 |
+
"reward": 1.431250025331974,
|
| 1111 |
+
"reward_std": 0.4796358771622181,
|
| 1112 |
+
"rewards/accuracy_reward": 0.5237500093877315,
|
| 1113 |
+
"rewards/format_reward": 0.907500010728836,
|
| 1114 |
+
"step": 850
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"completion_length": 247.44750480651857,
|
| 1118 |
+
"epoch": 1.1466666666666667,
|
| 1119 |
+
"grad_norm": 0.2607942819595337,
|
| 1120 |
+
"kl": 0.76661376953125,
|
| 1121 |
+
"learning_rate": 2.329117926354199e-06,
|
| 1122 |
+
"loss": 0.1561,
|
| 1123 |
+
"reward": 1.5350000128149985,
|
| 1124 |
+
"reward_std": 0.44854437448084356,
|
| 1125 |
+
"rewards/accuracy_reward": 0.6200000122189522,
|
| 1126 |
+
"rewards/format_reward": 0.9150000125169754,
|
| 1127 |
+
"step": 860
|
| 1128 |
+
},
|
| 1129 |
+
{
|
| 1130 |
+
"completion_length": 233.2700038909912,
|
| 1131 |
+
"epoch": 1.16,
|
| 1132 |
+
"grad_norm": 1.2619364261627197,
|
| 1133 |
+
"kl": 0.8174560546875,
|
| 1134 |
+
"learning_rate": 2.3096259869272697e-06,
|
| 1135 |
+
"loss": 0.1501,
|
| 1136 |
+
"reward": 1.5450000151991845,
|
| 1137 |
+
"reward_std": 0.35568486750125883,
|
| 1138 |
+
"rewards/accuracy_reward": 0.6012500108219683,
|
| 1139 |
+
"rewards/format_reward": 0.9437500029802323,
|
| 1140 |
+
"step": 870
|
| 1141 |
+
},
|
| 1142 |
+
{
|
| 1143 |
+
"completion_length": 294.38750610351565,
|
| 1144 |
+
"epoch": 1.1733333333333333,
|
| 1145 |
+
"grad_norm": 2.265449047088623,
|
| 1146 |
+
"kl": 1.6038818359375,
|
| 1147 |
+
"learning_rate": 2.2899391862795513e-06,
|
| 1148 |
+
"loss": 0.2953,
|
| 1149 |
+
"reward": 1.3987500235438346,
|
| 1150 |
+
"reward_std": 0.4723483145236969,
|
| 1151 |
+
"rewards/accuracy_reward": 0.5225000081583857,
|
| 1152 |
+
"rewards/format_reward": 0.8762500047683716,
|
| 1153 |
+
"step": 880
|
| 1154 |
+
},
|
| 1155 |
+
{
|
| 1156 |
+
"completion_length": 282.3900045394897,
|
| 1157 |
+
"epoch": 1.1866666666666668,
|
| 1158 |
+
"grad_norm": 1.2791324853897095,
|
| 1159 |
+
"kl": 1.3260498046875,
|
| 1160 |
+
"learning_rate": 2.2700622626408814e-06,
|
| 1161 |
+
"loss": 0.2613,
|
| 1162 |
+
"reward": 1.4525000251829625,
|
| 1163 |
+
"reward_std": 0.46175364293158055,
|
| 1164 |
+
"rewards/accuracy_reward": 0.5725000085309148,
|
| 1165 |
+
"rewards/format_reward": 0.8800000064074993,
|
| 1166 |
+
"step": 890
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"completion_length": 292.1812559127808,
|
| 1170 |
+
"epoch": 1.2,
|
| 1171 |
+
"grad_norm": 2.6686275005340576,
|
| 1172 |
+
"kl": 1.6286865234375,
|
| 1173 |
+
"learning_rate": 2.25e-06,
|
| 1174 |
+
"loss": 0.2693,
|
| 1175 |
+
"reward": 1.4675000235438347,
|
| 1176 |
+
"reward_std": 0.42986451014876365,
|
| 1177 |
+
"rewards/accuracy_reward": 0.5775000100024045,
|
| 1178 |
+
"rewards/format_reward": 0.8900000095367432,
|
| 1179 |
+
"step": 900
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"completion_length": 258.4387538909912,
|
| 1183 |
+
"epoch": 1.2133333333333334,
|
| 1184 |
+
"grad_norm": 0.4539574384689331,
|
| 1185 |
+
"kl": 0.7174560546875,
|
| 1186 |
+
"learning_rate": 2.2297572269531398e-06,
|
| 1187 |
+
"loss": 0.1006,
|
| 1188 |
+
"reward": 1.4200000211596489,
|
| 1189 |
+
"reward_std": 0.4356360357254744,
|
| 1190 |
+
"rewards/accuracy_reward": 0.5112500078976154,
|
| 1191 |
+
"rewards/format_reward": 0.9087500035762787,
|
| 1192 |
+
"step": 910
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"completion_length": 269.2125053405762,
|
| 1196 |
+
"epoch": 1.2266666666666666,
|
| 1197 |
+
"grad_norm": 1.3635307550430298,
|
| 1198 |
+
"kl": 0.868798828125,
|
| 1199 |
+
"learning_rate": 2.2093388155418754e-06,
|
| 1200 |
+
"loss": 0.1843,
|
| 1201 |
+
"reward": 1.4000000208616257,
|
| 1202 |
+
"reward_std": 0.45293766520917417,
|
| 1203 |
+
"rewards/accuracy_reward": 0.5125000071711838,
|
| 1204 |
+
"rewards/format_reward": 0.8875000134110451,
|
| 1205 |
+
"step": 920
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"completion_length": 259.2087543487549,
|
| 1209 |
+
"epoch": 1.24,
|
| 1210 |
+
"grad_norm": 0.48847752809524536,
|
| 1211 |
+
"kl": 0.7795654296875,
|
| 1212 |
+
"learning_rate": 2.1887496800805174e-06,
|
| 1213 |
+
"loss": 0.1366,
|
| 1214 |
+
"reward": 1.4850000232458114,
|
| 1215 |
+
"reward_std": 0.41869538016617297,
|
| 1216 |
+
"rewards/accuracy_reward": 0.5825000096112489,
|
| 1217 |
+
"rewards/format_reward": 0.9025000095367431,
|
| 1218 |
+
"step": 930
|
| 1219 |
+
},
|
| 1220 |
+
{
|
| 1221 |
+
"completion_length": 269.03500480651854,
|
| 1222 |
+
"epoch": 1.2533333333333334,
|
| 1223 |
+
"grad_norm": 0.4667813777923584,
|
| 1224 |
+
"kl": 0.8,
|
| 1225 |
+
"learning_rate": 2.167994775973334e-06,
|
| 1226 |
+
"loss": 0.1864,
|
| 1227 |
+
"reward": 1.4250000298023224,
|
| 1228 |
+
"reward_std": 0.4630339309573174,
|
| 1229 |
+
"rewards/accuracy_reward": 0.5162500089034439,
|
| 1230 |
+
"rewards/format_reward": 0.9087500050663948,
|
| 1231 |
+
"step": 940
|
| 1232 |
+
},
|
| 1233 |
+
{
|
| 1234 |
+
"completion_length": 244.85000133514404,
|
| 1235 |
+
"epoch": 1.2666666666666666,
|
| 1236 |
+
"grad_norm": 0.40062400698661804,
|
| 1237 |
+
"kl": 0.45528564453125,
|
| 1238 |
+
"learning_rate": 2.1470790985218807e-06,
|
| 1239 |
+
"loss": 0.1361,
|
| 1240 |
+
"reward": 1.5050000175833702,
|
| 1241 |
+
"reward_std": 0.3423164799809456,
|
| 1242 |
+
"rewards/accuracy_reward": 0.5662500064820051,
|
| 1243 |
+
"rewards/format_reward": 0.9387500077486038,
|
| 1244 |
+
"step": 950
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"completion_length": 222.37750396728515,
|
| 1248 |
+
"epoch": 1.28,
|
| 1249 |
+
"grad_norm": 0.6321477293968201,
|
| 1250 |
+
"kl": 0.36839599609375,
|
| 1251 |
+
"learning_rate": 2.126007681722727e-06,
|
| 1252 |
+
"loss": 0.0723,
|
| 1253 |
+
"reward": 1.59375002682209,
|
| 1254 |
+
"reward_std": 0.3785114776343107,
|
| 1255 |
+
"rewards/accuracy_reward": 0.635000008251518,
|
| 1256 |
+
"rewards/format_reward": 0.9587499991059303,
|
| 1257 |
+
"step": 960
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"completion_length": 251.10250453948976,
|
| 1261 |
+
"epoch": 1.2933333333333334,
|
| 1262 |
+
"grad_norm": 0.9746308326721191,
|
| 1263 |
+
"kl": 0.741796875,
|
| 1264 |
+
"learning_rate": 2.1047855970558753e-06,
|
| 1265 |
+
"loss": 0.1903,
|
| 1266 |
+
"reward": 1.4962500169873238,
|
| 1267 |
+
"reward_std": 0.4037658181041479,
|
| 1268 |
+
"rewards/accuracy_reward": 0.5725000067614019,
|
| 1269 |
+
"rewards/format_reward": 0.9237500071525574,
|
| 1270 |
+
"step": 970
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"completion_length": 267.5337539672852,
|
| 1274 |
+
"epoch": 1.3066666666666666,
|
| 1275 |
+
"grad_norm": 0.694874107837677,
|
| 1276 |
+
"kl": 0.81298828125,
|
| 1277 |
+
"learning_rate": 2.0834179522641508e-06,
|
| 1278 |
+
"loss": 0.175,
|
| 1279 |
+
"reward": 1.436250016093254,
|
| 1280 |
+
"reward_std": 0.48411559909582136,
|
| 1281 |
+
"rewards/accuracy_reward": 0.5475000135600567,
|
| 1282 |
+
"rewards/format_reward": 0.8887500107288361,
|
| 1283 |
+
"step": 980
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"completion_length": 249.49375286102295,
|
| 1287 |
+
"epoch": 1.32,
|
| 1288 |
+
"grad_norm": 1.1866592168807983,
|
| 1289 |
+
"kl": 0.6787109375,
|
| 1290 |
+
"learning_rate": 2.061909890123868e-06,
|
| 1291 |
+
"loss": 0.1094,
|
| 1292 |
+
"reward": 1.5050000250339508,
|
| 1293 |
+
"reward_std": 0.38125632815063,
|
| 1294 |
+
"rewards/accuracy_reward": 0.5500000072643161,
|
| 1295 |
+
"rewards/format_reward": 0.955000002682209,
|
| 1296 |
+
"step": 990
|
| 1297 |
+
},
|
| 1298 |
+
{
|
| 1299 |
+
"completion_length": 212.09500427246093,
|
| 1300 |
+
"epoch": 1.3333333333333333,
|
| 1301 |
+
"grad_norm": 0.23463357985019684,
|
| 1302 |
+
"kl": 0.49178466796875,
|
| 1303 |
+
"learning_rate": 2.040266587207066e-06,
|
| 1304 |
+
"loss": 0.06,
|
| 1305 |
+
"reward": 1.6800000190734863,
|
| 1306 |
+
"reward_std": 0.24786825627088546,
|
| 1307 |
+
"rewards/accuracy_reward": 0.695000005979091,
|
| 1308 |
+
"rewards/format_reward": 0.9850000008940697,
|
| 1309 |
+
"step": 1000
|
| 1310 |
+
},
|
| 1311 |
+
{
|
| 1312 |
+
"completion_length": 242.02375335693358,
|
| 1313 |
+
"epoch": 1.3466666666666667,
|
| 1314 |
+
"grad_norm": 0.6274837255477905,
|
| 1315 |
+
"kl": 0.54989013671875,
|
| 1316 |
+
"learning_rate": 2.018493252635605e-06,
|
| 1317 |
+
"loss": 0.1312,
|
| 1318 |
+
"reward": 1.4687500163912772,
|
| 1319 |
+
"reward_std": 0.4060431461781263,
|
| 1320 |
+
"rewards/accuracy_reward": 0.5275000087916851,
|
| 1321 |
+
"rewards/format_reward": 0.9412499994039536,
|
| 1322 |
+
"step": 1010
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"completion_length": 245.67000522613526,
|
| 1326 |
+
"epoch": 1.3599999999999999,
|
| 1327 |
+
"grad_norm": 0.6642753481864929,
|
| 1328 |
+
"kl": 1.0931396484375,
|
| 1329 |
+
"learning_rate": 1.9965951268274372e-06,
|
| 1330 |
+
"loss": 0.1868,
|
| 1331 |
+
"reward": 1.407500022649765,
|
| 1332 |
+
"reward_std": 0.43992825597524643,
|
| 1333 |
+
"rewards/accuracy_reward": 0.5087500089779496,
|
| 1334 |
+
"rewards/format_reward": 0.8987500041723251,
|
| 1335 |
+
"step": 1020
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"completion_length": 278.58875465393066,
|
| 1339 |
+
"epoch": 1.3733333333333333,
|
| 1340 |
+
"grad_norm": 0.6922321915626526,
|
| 1341 |
+
"kl": 0.83028564453125,
|
| 1342 |
+
"learning_rate": 1.9745774802353347e-06,
|
| 1343 |
+
"loss": 0.2212,
|
| 1344 |
+
"reward": 1.403750029206276,
|
| 1345 |
+
"reward_std": 0.4952257383614779,
|
| 1346 |
+
"rewards/accuracy_reward": 0.5325000079348683,
|
| 1347 |
+
"rewards/format_reward": 0.871250006556511,
|
| 1348 |
+
"step": 1030
|
| 1349 |
+
},
|
| 1350 |
+
{
|
| 1351 |
+
"completion_length": 248.9375057220459,
|
| 1352 |
+
"epoch": 1.3866666666666667,
|
| 1353 |
+
"grad_norm": 0.7095142602920532,
|
| 1354 |
+
"kl": 0.58486328125,
|
| 1355 |
+
"learning_rate": 1.9524456120783984e-06,
|
| 1356 |
+
"loss": 0.1207,
|
| 1357 |
+
"reward": 1.4600000217556954,
|
| 1358 |
+
"reward_std": 0.40168970376253127,
|
| 1359 |
+
"rewards/accuracy_reward": 0.5100000099278986,
|
| 1360 |
+
"rewards/format_reward": 0.9500000044703484,
|
| 1361 |
+
"step": 1040
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"completion_length": 205.45750255584716,
|
| 1365 |
+
"epoch": 1.4,
|
| 1366 |
+
"grad_norm": 0.5801204442977905,
|
| 1367 |
+
"kl": 0.292529296875,
|
| 1368 |
+
"learning_rate": 1.9302048490666355e-06,
|
| 1369 |
+
"loss": 0.0814,
|
| 1370 |
+
"reward": 1.6212500214576722,
|
| 1371 |
+
"reward_std": 0.3047562278807163,
|
| 1372 |
+
"rewards/accuracy_reward": 0.6475000135600567,
|
| 1373 |
+
"rewards/format_reward": 0.9737500011920929,
|
| 1374 |
+
"step": 1050
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"completion_length": 273.5137548446655,
|
| 1378 |
+
"epoch": 1.4133333333333333,
|
| 1379 |
+
"grad_norm": 0.6409977078437805,
|
| 1380 |
+
"kl": 0.58953857421875,
|
| 1381 |
+
"learning_rate": 1.9078605441189272e-06,
|
| 1382 |
+
"loss": 0.1281,
|
| 1383 |
+
"reward": 1.563750021159649,
|
| 1384 |
+
"reward_std": 0.356473108753562,
|
| 1385 |
+
"rewards/accuracy_reward": 0.620000010356307,
|
| 1386 |
+
"rewards/format_reward": 0.9437500007450581,
|
| 1387 |
+
"step": 1060
|
| 1388 |
+
},
|
| 1389 |
+
{
|
| 1390 |
+
"completion_length": 294.0987562179565,
|
| 1391 |
+
"epoch": 1.4266666666666667,
|
| 1392 |
+
"grad_norm": 0.7412673234939575,
|
| 1393 |
+
"kl": 1.6057373046875,
|
| 1394 |
+
"learning_rate": 1.8854180750746833e-06,
|
| 1395 |
+
"loss": 0.2387,
|
| 1396 |
+
"reward": 1.4962500244379044,
|
| 1397 |
+
"reward_std": 0.4668436422944069,
|
| 1398 |
+
"rewards/accuracy_reward": 0.5862500118091702,
|
| 1399 |
+
"rewards/format_reward": 0.9100000038743019,
|
| 1400 |
+
"step": 1070
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"completion_length": 293.7837539672852,
|
| 1404 |
+
"epoch": 1.44,
|
| 1405 |
+
"grad_norm": 0.8722511529922485,
|
| 1406 |
+
"kl": 0.612548828125,
|
| 1407 |
+
"learning_rate": 1.8628828433995015e-06,
|
| 1408 |
+
"loss": 0.1585,
|
| 1409 |
+
"reward": 1.4412500128149985,
|
| 1410 |
+
"reward_std": 0.44985799603164195,
|
| 1411 |
+
"rewards/accuracy_reward": 0.528750010021031,
|
| 1412 |
+
"rewards/format_reward": 0.9125000044703484,
|
| 1413 |
+
"step": 1080
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"completion_length": 252.32750244140624,
|
| 1417 |
+
"epoch": 1.4533333333333334,
|
| 1418 |
+
"grad_norm": 0.5518996119499207,
|
| 1419 |
+
"kl": 0.4095947265625,
|
| 1420 |
+
"learning_rate": 1.8402602728851404e-06,
|
| 1421 |
+
"loss": 0.1381,
|
| 1422 |
+
"reward": 1.5250000193715096,
|
| 1423 |
+
"reward_std": 0.4259300407022238,
|
| 1424 |
+
"rewards/accuracy_reward": 0.5825000069104135,
|
| 1425 |
+
"rewards/format_reward": 0.942500002682209,
|
| 1426 |
+
"step": 1090
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"completion_length": 241.40625343322753,
|
| 1430 |
+
"epoch": 1.4666666666666668,
|
| 1431 |
+
"grad_norm": 0.4469586908817291,
|
| 1432 |
+
"kl": 0.302294921875,
|
| 1433 |
+
"learning_rate": 1.8175558083441164e-06,
|
| 1434 |
+
"loss": 0.0911,
|
| 1435 |
+
"reward": 1.506250025331974,
|
| 1436 |
+
"reward_std": 0.4210752282291651,
|
| 1437 |
+
"rewards/accuracy_reward": 0.5437500099651515,
|
| 1438 |
+
"rewards/format_reward": 0.9625000029802322,
|
| 1439 |
+
"step": 1100
|
| 1440 |
+
},
|
| 1441 |
+
{
|
| 1442 |
+
"completion_length": 286.4412563323975,
|
| 1443 |
+
"epoch": 1.48,
|
| 1444 |
+
"grad_norm": 0.7064781785011292,
|
| 1445 |
+
"kl": 0.4929443359375,
|
| 1446 |
+
"learning_rate": 1.7947749142992453e-06,
|
| 1447 |
+
"loss": 0.2215,
|
| 1448 |
+
"reward": 1.4950000211596488,
|
| 1449 |
+
"reward_std": 0.51452008895576,
|
| 1450 |
+
"rewards/accuracy_reward": 0.5887500088661909,
|
| 1451 |
+
"rewards/format_reward": 0.9062500074505806,
|
| 1452 |
+
"step": 1110
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"completion_length": 285.3000036239624,
|
| 1456 |
+
"epoch": 1.4933333333333334,
|
| 1457 |
+
"grad_norm": 0.34774771332740784,
|
| 1458 |
+
"kl": 0.623095703125,
|
| 1459 |
+
"learning_rate": 1.7719230736684376e-06,
|
| 1460 |
+
"loss": 0.1511,
|
| 1461 |
+
"reward": 1.4975000232458116,
|
| 1462 |
+
"reward_std": 0.43432362116873263,
|
| 1463 |
+
"rewards/accuracy_reward": 0.567500009946525,
|
| 1464 |
+
"rewards/format_reward": 0.9300000041723251,
|
| 1465 |
+
"step": 1120
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"completion_length": 286.05500450134275,
|
| 1469 |
+
"epoch": 1.5066666666666668,
|
| 1470 |
+
"grad_norm": 0.33899247646331787,
|
| 1471 |
+
"kl": 0.45242919921875,
|
| 1472 |
+
"learning_rate": 1.7490057864450664e-06,
|
| 1473 |
+
"loss": 0.1266,
|
| 1474 |
+
"reward": 1.588750024139881,
|
| 1475 |
+
"reward_std": 0.38815081119537354,
|
| 1476 |
+
"rewards/accuracy_reward": 0.6287500103004277,
|
| 1477 |
+
"rewards/format_reward": 0.9600000023841858,
|
| 1478 |
+
"step": 1130
|
| 1479 |
+
},
|
| 1480 |
+
{
|
| 1481 |
+
"completion_length": 244.75125102996827,
|
| 1482 |
+
"epoch": 1.52,
|
| 1483 |
+
"grad_norm": 0.8289720416069031,
|
| 1484 |
+
"kl": 0.41170654296875,
|
| 1485 |
+
"learning_rate": 1.7260285683742248e-06,
|
| 1486 |
+
"loss": 0.1008,
|
| 1487 |
+
"reward": 1.5962500244379043,
|
| 1488 |
+
"reward_std": 0.3575746387243271,
|
| 1489 |
+
"rewards/accuracy_reward": 0.6387500097043812,
|
| 1490 |
+
"rewards/format_reward": 0.9575000002980232,
|
| 1491 |
+
"step": 1140
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"completion_length": 295.0500051498413,
|
| 1495 |
+
"epoch": 1.5333333333333332,
|
| 1496 |
+
"grad_norm": 0.7848290205001831,
|
| 1497 |
+
"kl": 0.7958251953125,
|
| 1498 |
+
"learning_rate": 1.702996949625197e-06,
|
| 1499 |
+
"loss": 0.1871,
|
| 1500 |
+
"reward": 1.458750021457672,
|
| 1501 |
+
"reward_std": 0.44078024849295616,
|
| 1502 |
+
"rewards/accuracy_reward": 0.556250006519258,
|
| 1503 |
+
"rewards/format_reward": 0.9025000110268593,
|
| 1504 |
+
"step": 1150
|
| 1505 |
+
},
|
| 1506 |
+
{
|
| 1507 |
+
"completion_length": 257.19375495910646,
|
| 1508 |
+
"epoch": 1.5466666666666666,
|
| 1509 |
+
"grad_norm": 1.2715580463409424,
|
| 1510 |
+
"kl": 0.8576416015625,
|
| 1511 |
+
"learning_rate": 1.6799164734604496e-06,
|
| 1512 |
+
"loss": 0.2015,
|
| 1513 |
+
"reward": 1.556250013411045,
|
| 1514 |
+
"reward_std": 0.5148981977254152,
|
| 1515 |
+
"rewards/accuracy_reward": 0.6575000089593231,
|
| 1516 |
+
"rewards/format_reward": 0.8987500116229057,
|
| 1517 |
+
"step": 1160
|
| 1518 |
+
},
|
| 1519 |
+
{
|
| 1520 |
+
"completion_length": 288.4437545776367,
|
| 1521 |
+
"epoch": 1.56,
|
| 1522 |
+
"grad_norm": 1.1853872537612915,
|
| 1523 |
+
"kl": 1.4738037109375,
|
| 1524 |
+
"learning_rate": 1.6567926949014804e-06,
|
| 1525 |
+
"loss": 0.2435,
|
| 1526 |
+
"reward": 1.4325000256299973,
|
| 1527 |
+
"reward_std": 0.45326643362641333,
|
| 1528 |
+
"rewards/accuracy_reward": 0.5550000136718154,
|
| 1529 |
+
"rewards/format_reward": 0.8775000154972077,
|
| 1530 |
+
"step": 1170
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"completion_length": 250.51375427246094,
|
| 1534 |
+
"epoch": 1.5733333333333333,
|
| 1535 |
+
"grad_norm": 0.7030949592590332,
|
| 1536 |
+
"kl": 0.99638671875,
|
| 1537 |
+
"learning_rate": 1.6336311793918296e-06,
|
| 1538 |
+
"loss": 0.1342,
|
| 1539 |
+
"reward": 1.4425000190734862,
|
| 1540 |
+
"reward_std": 0.3800163000822067,
|
| 1541 |
+
"rewards/accuracy_reward": 0.49750001104548575,
|
| 1542 |
+
"rewards/format_reward": 0.9450000047683715,
|
| 1543 |
+
"step": 1180
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"completion_length": 239.85750503540038,
|
| 1547 |
+
"epoch": 1.5866666666666667,
|
| 1548 |
+
"grad_norm": 0.744570791721344,
|
| 1549 |
+
"kl": 0.98948974609375,
|
| 1550 |
+
"learning_rate": 1.6104375014575872e-06,
|
| 1551 |
+
"loss": 0.1446,
|
| 1552 |
+
"reward": 1.5650000274181366,
|
| 1553 |
+
"reward_std": 0.404941875860095,
|
| 1554 |
+
"rewards/accuracy_reward": 0.6237500123679638,
|
| 1555 |
+
"rewards/format_reward": 0.9412500113248825,
|
| 1556 |
+
"step": 1190
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"completion_length": 242.6050043106079,
|
| 1560 |
+
"epoch": 1.6,
|
| 1561 |
+
"grad_norm": 0.6778237819671631,
|
| 1562 |
+
"kl": 59.4015869140625,
|
| 1563 |
+
"learning_rate": 1.5872172433657137e-06,
|
| 1564 |
+
"loss": 3.6695,
|
| 1565 |
+
"reward": 1.4675000220537187,
|
| 1566 |
+
"reward_std": 0.4261274352669716,
|
| 1567 |
+
"rewards/accuracy_reward": 0.5350000061094761,
|
| 1568 |
+
"rewards/format_reward": 0.9325000092387199,
|
| 1569 |
+
"step": 1200
|
| 1570 |
+
},
|
| 1571 |
+
{
|
| 1572 |
+
"completion_length": 254.56750507354735,
|
| 1573 |
+
"epoch": 1.6133333333333333,
|
| 1574 |
+
"grad_norm": 1.1174402236938477,
|
| 1575 |
+
"kl": 1.0924072265625,
|
| 1576 |
+
"learning_rate": 1.563975993780496e-06,
|
| 1577 |
+
"loss": 0.2037,
|
| 1578 |
+
"reward": 1.426250010728836,
|
| 1579 |
+
"reward_std": 0.4171265188604593,
|
| 1580 |
+
"rewards/accuracy_reward": 0.5037500091828406,
|
| 1581 |
+
"rewards/format_reward": 0.9225000068545341,
|
| 1582 |
+
"step": 1210
|
| 1583 |
+
},
|
| 1584 |
+
{
|
| 1585 |
+
"completion_length": 250.00875434875488,
|
| 1586 |
+
"epoch": 1.6266666666666667,
|
| 1587 |
+
"grad_norm": 0.1975303441286087,
|
| 1588 |
+
"kl": 0.5531982421875,
|
| 1589 |
+
"learning_rate": 1.5407193464184646e-06,
|
| 1590 |
+
"loss": 0.0767,
|
| 1591 |
+
"reward": 1.5937500238418578,
|
| 1592 |
+
"reward_std": 0.293658309802413,
|
| 1593 |
+
"rewards/accuracy_reward": 0.6125000089406967,
|
| 1594 |
+
"rewards/format_reward": 0.9812499985098839,
|
| 1595 |
+
"step": 1220
|
| 1596 |
+
},
|
| 1597 |
+
{
|
| 1598 |
+
"completion_length": 250.21375293731688,
|
| 1599 |
+
"epoch": 1.6400000000000001,
|
| 1600 |
+
"grad_norm": 0.6114612817764282,
|
| 1601 |
+
"kl": 0.53138427734375,
|
| 1602 |
+
"learning_rate": 1.5174528987020958e-06,
|
| 1603 |
+
"loss": 0.1333,
|
| 1604 |
+
"reward": 1.557500022649765,
|
| 1605 |
+
"reward_std": 0.36959521323442457,
|
| 1606 |
+
"rewards/accuracy_reward": 0.6162500135600567,
|
| 1607 |
+
"rewards/format_reward": 0.9412500083446502,
|
| 1608 |
+
"step": 1230
|
| 1609 |
+
},
|
| 1610 |
+
{
|
| 1611 |
+
"completion_length": 296.5837543487549,
|
| 1612 |
+
"epoch": 1.6533333333333333,
|
| 1613 |
+
"grad_norm": 0.6539386510848999,
|
| 1614 |
+
"kl": 0.7985107421875,
|
| 1615 |
+
"learning_rate": 1.4941822504126198e-06,
|
| 1616 |
+
"loss": 0.1803,
|
| 1617 |
+
"reward": 1.4350000217556953,
|
| 1618 |
+
"reward_std": 0.4217760156840086,
|
| 1619 |
+
"rewards/accuracy_reward": 0.5200000086799264,
|
| 1620 |
+
"rewards/format_reward": 0.9150000095367432,
|
| 1621 |
+
"step": 1240
|
| 1622 |
+
},
|
| 1623 |
+
{
|
| 1624 |
+
"completion_length": 257.9250057220459,
|
| 1625 |
+
"epoch": 1.6666666666666665,
|
| 1626 |
+
"grad_norm": 0.6114557385444641,
|
| 1627 |
+
"kl": 44.12962646484375,
|
| 1628 |
+
"learning_rate": 1.4709130023422637e-06,
|
| 1629 |
+
"loss": 0.8266,
|
| 1630 |
+
"reward": 1.5075000166893004,
|
| 1631 |
+
"reward_std": 0.3939127091318369,
|
| 1632 |
+
"rewards/accuracy_reward": 0.5762500106357038,
|
| 1633 |
+
"rewards/format_reward": 0.9312500074505806,
|
| 1634 |
+
"step": 1250
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"completion_length": 265.36750450134275,
|
| 1638 |
+
"epoch": 1.6800000000000002,
|
| 1639 |
+
"grad_norm": 0.49496781826019287,
|
| 1640 |
+
"kl": 0.77027587890625,
|
| 1641 |
+
"learning_rate": 1.4476507549462489e-06,
|
| 1642 |
+
"loss": 0.1636,
|
| 1643 |
+
"reward": 1.4825000166893005,
|
| 1644 |
+
"reward_std": 0.443204028531909,
|
| 1645 |
+
"rewards/accuracy_reward": 0.5437500104308128,
|
| 1646 |
+
"rewards/format_reward": 0.9387500062584877,
|
| 1647 |
+
"step": 1260
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"completion_length": 281.16000480651854,
|
| 1651 |
+
"epoch": 1.6933333333333334,
|
| 1652 |
+
"grad_norm": 0.7085089087486267,
|
| 1653 |
+
"kl": 0.9700439453125,
|
| 1654 |
+
"learning_rate": 1.4244011069948701e-06,
|
| 1655 |
+
"loss": 0.2137,
|
| 1656 |
+
"reward": 1.413750021159649,
|
| 1657 |
+
"reward_std": 0.4564998596906662,
|
| 1658 |
+
"rewards/accuracy_reward": 0.5200000060722232,
|
| 1659 |
+
"rewards/format_reward": 0.8937500104308128,
|
| 1660 |
+
"step": 1270
|
| 1661 |
+
},
|
| 1662 |
+
{
|
| 1663 |
+
"completion_length": 287.8412548065186,
|
| 1664 |
+
"epoch": 1.7066666666666666,
|
| 1665 |
+
"grad_norm": 1.8162543773651123,
|
| 1666 |
+
"kl": 1.462109375,
|
| 1667 |
+
"learning_rate": 1.401169654225982e-06,
|
| 1668 |
+
"loss": 0.2375,
|
| 1669 |
+
"reward": 1.4162500217556953,
|
| 1670 |
+
"reward_std": 0.49586384519934656,
|
| 1671 |
+
"rewards/accuracy_reward": 0.5150000074878335,
|
| 1672 |
+
"rewards/format_reward": 0.9012500092387199,
|
| 1673 |
+
"step": 1280
|
| 1674 |
+
},
|
| 1675 |
+
{
|
| 1676 |
+
"completion_length": 279.57375583648684,
|
| 1677 |
+
"epoch": 1.72,
|
| 1678 |
+
"grad_norm": 0.674432098865509,
|
| 1679 |
+
"kl": 0.92662353515625,
|
| 1680 |
+
"learning_rate": 1.3779619879982127e-06,
|
| 1681 |
+
"loss": 0.1772,
|
| 1682 |
+
"reward": 1.5175000190734864,
|
| 1683 |
+
"reward_std": 0.4668840833008289,
|
| 1684 |
+
"rewards/accuracy_reward": 0.5912500144913793,
|
| 1685 |
+
"rewards/format_reward": 0.9262500107288361,
|
| 1686 |
+
"step": 1290
|
| 1687 |
+
},
|
| 1688 |
+
{
|
| 1689 |
+
"completion_length": 289.03125457763673,
|
| 1690 |
+
"epoch": 1.7333333333333334,
|
| 1691 |
+
"grad_norm": 0.7836817502975464,
|
| 1692 |
+
"kl": 0.88634033203125,
|
| 1693 |
+
"learning_rate": 1.3547836939452313e-06,
|
| 1694 |
+
"loss": 0.1244,
|
| 1695 |
+
"reward": 1.4987500250339507,
|
| 1696 |
+
"reward_std": 0.3810611065477133,
|
| 1697 |
+
"rewards/accuracy_reward": 0.5412500070407986,
|
| 1698 |
+
"rewards/format_reward": 0.9575000047683716,
|
| 1699 |
+
"step": 1300
|
| 1700 |
+
},
|
| 1701 |
+
{
|
| 1702 |
+
"completion_length": 284.0875045776367,
|
| 1703 |
+
"epoch": 1.7466666666666666,
|
| 1704 |
+
"grad_norm": 0.7931172847747803,
|
| 1705 |
+
"kl": 1.0406494140625,
|
| 1706 |
+
"learning_rate": 1.3316403506313982e-06,
|
| 1707 |
+
"loss": 0.1187,
|
| 1708 |
+
"reward": 1.5062500283122062,
|
| 1709 |
+
"reward_std": 0.3796513009816408,
|
| 1710 |
+
"rewards/accuracy_reward": 0.560000008251518,
|
| 1711 |
+
"rewards/format_reward": 0.9462500020861626,
|
| 1712 |
+
"step": 1310
|
| 1713 |
+
},
|
| 1714 |
+
{
|
| 1715 |
+
"completion_length": 267.00625438690184,
|
| 1716 |
+
"epoch": 1.76,
|
| 1717 |
+
"grad_norm": 0.7942720651626587,
|
| 1718 |
+
"kl": 0.7413818359375,
|
| 1719 |
+
"learning_rate": 1.308537528209108e-06,
|
| 1720 |
+
"loss": 0.0855,
|
| 1721 |
+
"reward": 1.5075000256299973,
|
| 1722 |
+
"reward_std": 0.43465386927127836,
|
| 1723 |
+
"rewards/accuracy_reward": 0.568750012665987,
|
| 1724 |
+
"rewards/format_reward": 0.9387500032782554,
|
| 1725 |
+
"step": 1320
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"completion_length": 275.38625450134276,
|
| 1729 |
+
"epoch": 1.7733333333333334,
|
| 1730 |
+
"grad_norm": 1.8723665475845337,
|
| 1731 |
+
"kl": 1.5499755859375,
|
| 1732 |
+
"learning_rate": 1.2854807870781687e-06,
|
| 1733 |
+
"loss": 0.1942,
|
| 1734 |
+
"reward": 1.4487500324845315,
|
| 1735 |
+
"reward_std": 0.42911659814417363,
|
| 1736 |
+
"rewards/accuracy_reward": 0.5437500085681677,
|
| 1737 |
+
"rewards/format_reward": 0.9050000056624412,
|
| 1738 |
+
"step": 1330
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"completion_length": 276.2012542724609,
|
| 1742 |
+
"epoch": 1.7866666666666666,
|
| 1743 |
+
"grad_norm": 0.5324939489364624,
|
| 1744 |
+
"kl": 1.421630859375,
|
| 1745 |
+
"learning_rate": 1.2624756765475158e-06,
|
| 1746 |
+
"loss": 0.1505,
|
| 1747 |
+
"reward": 1.3537500247359275,
|
| 1748 |
+
"reward_std": 0.43583590127527716,
|
| 1749 |
+
"rewards/accuracy_reward": 0.462500009406358,
|
| 1750 |
+
"rewards/format_reward": 0.8912500083446503,
|
| 1751 |
+
"step": 1340
|
| 1752 |
+
},
|
| 1753 |
+
{
|
| 1754 |
+
"completion_length": 270.83750343322754,
|
| 1755 |
+
"epoch": 1.8,
|
| 1756 |
+
"grad_norm": 2.056743621826172,
|
| 1757 |
+
"kl": 1.954345703125,
|
| 1758 |
+
"learning_rate": 1.2395277334996047e-06,
|
| 1759 |
+
"loss": 0.2111,
|
| 1760 |
+
"reward": 1.5400000274181367,
|
| 1761 |
+
"reward_std": 0.45903370566666124,
|
| 1762 |
+
"rewards/accuracy_reward": 0.60125000923872,
|
| 1763 |
+
"rewards/format_reward": 0.9387500077486038,
|
| 1764 |
+
"step": 1350
|
| 1765 |
+
},
|
| 1766 |
+
{
|
| 1767 |
+
"completion_length": 279.6050037384033,
|
| 1768 |
+
"epoch": 1.8133333333333335,
|
| 1769 |
+
"grad_norm": 0.9626988768577576,
|
| 1770 |
+
"kl": 1.0287353515625,
|
| 1771 |
+
"learning_rate": 1.2166424810577898e-06,
|
| 1772 |
+
"loss": 0.1235,
|
| 1773 |
+
"reward": 1.4925000071525574,
|
| 1774 |
+
"reward_std": 0.3699305009096861,
|
| 1775 |
+
"rewards/accuracy_reward": 0.5512500081211329,
|
| 1776 |
+
"rewards/format_reward": 0.9412500083446502,
|
| 1777 |
+
"step": 1360
|
| 1778 |
+
},
|
| 1779 |
+
{
|
| 1780 |
+
"completion_length": 325.78000526428224,
|
| 1781 |
+
"epoch": 1.8266666666666667,
|
| 1782 |
+
"grad_norm": 1.466002345085144,
|
| 1783 |
+
"kl": 1.82490234375,
|
| 1784 |
+
"learning_rate": 1.1938254272570166e-06,
|
| 1785 |
+
"loss": 0.2711,
|
| 1786 |
+
"reward": 1.445000024139881,
|
| 1787 |
+
"reward_std": 0.5365722481161356,
|
| 1788 |
+
"rewards/accuracy_reward": 0.5700000077486038,
|
| 1789 |
+
"rewards/format_reward": 0.8750000096857548,
|
| 1790 |
+
"step": 1370
|
| 1791 |
+
},
|
| 1792 |
+
{
|
| 1793 |
+
"completion_length": 284.211255645752,
|
| 1794 |
+
"epoch": 1.8399999999999999,
|
| 1795 |
+
"grad_norm": 0.9256098866462708,
|
| 1796 |
+
"kl": 1.1132080078125,
|
| 1797 |
+
"learning_rate": 1.1710820637181448e-06,
|
| 1798 |
+
"loss": 0.1941,
|
| 1799 |
+
"reward": 1.490000031888485,
|
| 1800 |
+
"reward_std": 0.47110406346619127,
|
| 1801 |
+
"rewards/accuracy_reward": 0.58000000808388,
|
| 1802 |
+
"rewards/format_reward": 0.9100000098347664,
|
| 1803 |
+
"step": 1380
|
| 1804 |
+
},
|
| 1805 |
+
{
|
| 1806 |
+
"completion_length": 248.72625560760497,
|
| 1807 |
+
"epoch": 1.8533333333333335,
|
| 1808 |
+
"grad_norm": 0.4293259084224701,
|
| 1809 |
+
"kl": 0.5682373046875,
|
| 1810 |
+
"learning_rate": 1.1484178643262232e-06,
|
| 1811 |
+
"loss": 0.0911,
|
| 1812 |
+
"reward": 1.6337500184774398,
|
| 1813 |
+
"reward_std": 0.3414465494453907,
|
| 1814 |
+
"rewards/accuracy_reward": 0.6662500083446503,
|
| 1815 |
+
"rewards/format_reward": 0.967500002682209,
|
| 1816 |
+
"step": 1390
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"completion_length": 240.6875026702881,
|
| 1820 |
+
"epoch": 1.8666666666666667,
|
| 1821 |
+
"grad_norm": 0.5720169544219971,
|
| 1822 |
+
"kl": 0.82125244140625,
|
| 1823 |
+
"learning_rate": 1.1258382839130282e-06,
|
| 1824 |
+
"loss": 0.1097,
|
| 1825 |
+
"reward": 1.570000022649765,
|
| 1826 |
+
"reward_std": 0.4139075022190809,
|
| 1827 |
+
"rewards/accuracy_reward": 0.6237500090152025,
|
| 1828 |
+
"rewards/format_reward": 0.9462500035762786,
|
| 1829 |
+
"step": 1400
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"completion_length": 257.53500480651854,
|
| 1833 |
+
"epoch": 1.88,
|
| 1834 |
+
"grad_norm": 1.1818897724151611,
|
| 1835 |
+
"kl": 0.95081787109375,
|
| 1836 |
+
"learning_rate": 1.103348756944197e-06,
|
| 1837 |
+
"loss": 0.1008,
|
| 1838 |
+
"reward": 1.4837500154972076,
|
| 1839 |
+
"reward_std": 0.42501535080373287,
|
| 1840 |
+
"rewards/accuracy_reward": 0.5600000080652535,
|
| 1841 |
+
"rewards/format_reward": 0.9237500101327896,
|
| 1842 |
+
"step": 1410
|
| 1843 |
+
},
|
| 1844 |
+
{
|
| 1845 |
+
"completion_length": 247.4950050354004,
|
| 1846 |
+
"epoch": 1.8933333333333333,
|
| 1847 |
+
"grad_norm": 0.6974407434463501,
|
| 1848 |
+
"kl": 1.0361083984375,
|
| 1849 |
+
"learning_rate": 1.0809546962112535e-06,
|
| 1850 |
+
"loss": 0.1492,
|
| 1851 |
+
"reward": 1.4875000149011612,
|
| 1852 |
+
"reward_std": 0.3567169703543186,
|
| 1853 |
+
"rewards/accuracy_reward": 0.538750009983778,
|
| 1854 |
+
"rewards/format_reward": 0.9487500041723251,
|
| 1855 |
+
"step": 1420
|
| 1856 |
+
},
|
| 1857 |
+
{
|
| 1858 |
+
"completion_length": 268.65250663757325,
|
| 1859 |
+
"epoch": 1.9066666666666667,
|
| 1860 |
+
"grad_norm": 1.1433619260787964,
|
| 1861 |
+
"kl": 1.185693359375,
|
| 1862 |
+
"learning_rate": 1.0586614915288572e-06,
|
| 1863 |
+
"loss": 0.1517,
|
| 1864 |
+
"reward": 1.4925000205636025,
|
| 1865 |
+
"reward_std": 0.4326970729976892,
|
| 1866 |
+
"rewards/accuracy_reward": 0.5587500042282045,
|
| 1867 |
+
"rewards/format_reward": 0.9337500005960464,
|
| 1868 |
+
"step": 1430
|
| 1869 |
+
},
|
| 1870 |
+
{
|
| 1871 |
+
"completion_length": 255.78125648498536,
|
| 1872 |
+
"epoch": 1.92,
|
| 1873 |
+
"grad_norm": 0.6243150234222412,
|
| 1874 |
+
"kl": 1.2357177734375,
|
| 1875 |
+
"learning_rate": 1.036474508437579e-06,
|
| 1876 |
+
"loss": 0.1554,
|
| 1877 |
+
"reward": 1.4700000181794166,
|
| 1878 |
+
"reward_std": 0.44454205557703974,
|
| 1879 |
+
"rewards/accuracy_reward": 0.5537500033155084,
|
| 1880 |
+
"rewards/format_reward": 0.9162500083446503,
|
| 1881 |
+
"step": 1440
|
| 1882 |
+
},
|
| 1883 |
+
{
|
| 1884 |
+
"completion_length": 234.58750495910644,
|
| 1885 |
+
"epoch": 1.9333333333333333,
|
| 1886 |
+
"grad_norm": 0.6096332669258118,
|
| 1887 |
+
"kl": 0.67691650390625,
|
| 1888 |
+
"learning_rate": 1.0143990869125186e-06,
|
| 1889 |
+
"loss": 0.099,
|
| 1890 |
+
"reward": 1.5912500202655793,
|
| 1891 |
+
"reward_std": 0.36347288005053996,
|
| 1892 |
+
"rewards/accuracy_reward": 0.6275000140070915,
|
| 1893 |
+
"rewards/format_reward": 0.9637500032782554,
|
| 1894 |
+
"step": 1450
|
| 1895 |
+
},
|
| 1896 |
+
{
|
| 1897 |
+
"completion_length": 256.7262538909912,
|
| 1898 |
+
"epoch": 1.9466666666666668,
|
| 1899 |
+
"grad_norm": 1.1025887727737427,
|
| 1900 |
+
"kl": 1.1599609375,
|
| 1901 |
+
"learning_rate": 9.924405400780786e-07,
|
| 1902 |
+
"loss": 0.1453,
|
| 1903 |
+
"reward": 1.4675000190734864,
|
| 1904 |
+
"reward_std": 0.3775463242083788,
|
| 1905 |
+
"rewards/accuracy_reward": 0.5312500094994903,
|
| 1906 |
+
"rewards/format_reward": 0.9362500011920929,
|
| 1907 |
+
"step": 1460
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"completion_length": 268.33000297546386,
|
| 1911 |
+
"epoch": 1.96,
|
| 1912 |
+
"grad_norm": 1.1707123517990112,
|
| 1913 |
+
"kl": 1.133642578125,
|
| 1914 |
+
"learning_rate": 9.70604152929197e-07,
|
| 1915 |
+
"loss": 0.1489,
|
| 1916 |
+
"reward": 1.4312500163912774,
|
| 1917 |
+
"reward_std": 0.4398480519652367,
|
| 1918 |
+
"rewards/accuracy_reward": 0.5075000053271651,
|
| 1919 |
+
"rewards/format_reward": 0.9237500041723251,
|
| 1920 |
+
"step": 1470
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"completion_length": 257.52125358581543,
|
| 1924 |
+
"epoch": 1.9733333333333334,
|
| 1925 |
+
"grad_norm": 0.9173078536987305,
|
| 1926 |
+
"kl": 1.48629150390625,
|
| 1927 |
+
"learning_rate": 9.488951810593526e-07,
|
| 1928 |
+
"loss": 0.1856,
|
| 1929 |
+
"reward": 1.4750000312924385,
|
| 1930 |
+
"reward_std": 0.4462425637990236,
|
| 1931 |
+
"rewards/accuracy_reward": 0.5600000127218664,
|
| 1932 |
+
"rewards/format_reward": 0.9150000050663948,
|
| 1933 |
+
"step": 1480
|
| 1934 |
+
},
|
| 1935 |
+
{
|
| 1936 |
+
"completion_length": 266.10000228881836,
|
| 1937 |
+
"epoch": 1.9866666666666668,
|
| 1938 |
+
"grad_norm": 0.7360009551048279,
|
| 1939 |
+
"kl": 1.1963623046875,
|
| 1940 |
+
"learning_rate": 9.273188493956475e-07,
|
| 1941 |
+
"loss": 0.1318,
|
| 1942 |
+
"reward": 1.5275000244379044,
|
| 1943 |
+
"reward_std": 0.38836930617690085,
|
| 1944 |
+
"rewards/accuracy_reward": 0.6137500053271652,
|
| 1945 |
+
"rewards/format_reward": 0.9137500077486038,
|
| 1946 |
+
"step": 1490
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"completion_length": 254.0337522506714,
|
| 1950 |
+
"epoch": 2.0,
|
| 1951 |
+
"grad_norm": 0.8448986411094666,
|
| 1952 |
+
"kl": 1.1837646484375,
|
| 1953 |
+
"learning_rate": 9.058803509412648e-07,
|
| 1954 |
+
"loss": 0.1552,
|
| 1955 |
+
"reward": 1.5100000187754632,
|
| 1956 |
+
"reward_std": 0.4034050587564707,
|
| 1957 |
+
"rewards/accuracy_reward": 0.5787500125356019,
|
| 1958 |
+
"rewards/format_reward": 0.9312500029802322,
|
| 1959 |
+
"step": 1500
|
| 1960 |
+
},
|
| 1961 |
+
{
|
| 1962 |
+
"completion_length": 251.92000274658204,
|
| 1963 |
+
"epoch": 2.013333333333333,
|
| 1964 |
+
"grad_norm": 0.3304300904273987,
|
| 1965 |
+
"kl": 0.811279296875,
|
| 1966 |
+
"learning_rate": 8.84584845525618e-07,
|
| 1967 |
+
"loss": 0.1094,
|
| 1968 |
+
"reward": 1.5350000232458114,
|
| 1969 |
+
"reward_std": 0.37311027348041537,
|
| 1970 |
+
"rewards/accuracy_reward": 0.5937500129453838,
|
| 1971 |
+
"rewards/format_reward": 0.941250005364418,
|
| 1972 |
+
"step": 1510
|
| 1973 |
+
},
|
| 1974 |
+
{
|
| 1975 |
+
"completion_length": 257.3825050354004,
|
| 1976 |
+
"epoch": 2.026666666666667,
|
| 1977 |
+
"grad_norm": 2.269232988357544,
|
| 1978 |
+
"kl": 1.01397705078125,
|
| 1979 |
+
"learning_rate": 8.63437458562477e-07,
|
| 1980 |
+
"loss": 0.1731,
|
| 1981 |
+
"reward": 1.5512500256299973,
|
| 1982 |
+
"reward_std": 0.4206295557320118,
|
| 1983 |
+
"rewards/accuracy_reward": 0.6212500111199916,
|
| 1984 |
+
"rewards/format_reward": 0.9300000056624412,
|
| 1985 |
+
"step": 1520
|
| 1986 |
+
},
|
| 1987 |
+
{
|
| 1988 |
+
"completion_length": 246.79625415802002,
|
| 1989 |
+
"epoch": 2.04,
|
| 1990 |
+
"grad_norm": 2.4657490253448486,
|
| 1991 |
+
"kl": 1.84619140625,
|
| 1992 |
+
"learning_rate": 8.424432798163837e-07,
|
| 1993 |
+
"loss": 0.1957,
|
| 1994 |
+
"reward": 1.462500013411045,
|
| 1995 |
+
"reward_std": 0.46618823148310184,
|
| 1996 |
+
"rewards/accuracy_reward": 0.5862500076182187,
|
| 1997 |
+
"rewards/format_reward": 0.87625000923872,
|
| 1998 |
+
"step": 1530
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"completion_length": 244.07625579833984,
|
| 2002 |
+
"epoch": 2.0533333333333332,
|
| 2003 |
+
"grad_norm": 0.878600537776947,
|
| 2004 |
+
"kl": 1.319287109375,
|
| 2005 |
+
"learning_rate": 8.216073621776437e-07,
|
| 2006 |
+
"loss": 0.097,
|
| 2007 |
+
"reward": 1.4925000190734863,
|
| 2008 |
+
"reward_std": 0.4461408320814371,
|
| 2009 |
+
"rewards/accuracy_reward": 0.5762500118464231,
|
| 2010 |
+
"rewards/format_reward": 0.916250005364418,
|
| 2011 |
+
"step": 1540
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"completion_length": 231.71000556945802,
|
| 2015 |
+
"epoch": 2.066666666666667,
|
| 2016 |
+
"grad_norm": 0.6690750122070312,
|
| 2017 |
+
"kl": 0.91011962890625,
|
| 2018 |
+
"learning_rate": 8.009347204461922e-07,
|
| 2019 |
+
"loss": 0.0719,
|
| 2020 |
+
"reward": 1.5675000205636025,
|
| 2021 |
+
"reward_std": 0.3554057668894529,
|
| 2022 |
+
"rewards/accuracy_reward": 0.6100000100210309,
|
| 2023 |
+
"rewards/format_reward": 0.9575000047683716,
|
| 2024 |
+
"step": 1550
|
| 2025 |
+
},
|
| 2026 |
+
{
|
| 2027 |
+
"completion_length": 230.32750396728517,
|
| 2028 |
+
"epoch": 2.08,
|
| 2029 |
+
"grad_norm": 0.9904080033302307,
|
| 2030 |
+
"kl": 0.50635986328125,
|
| 2031 |
+
"learning_rate": 7.804303301246311e-07,
|
| 2032 |
+
"loss": 0.0681,
|
| 2033 |
+
"reward": 1.675000011920929,
|
| 2034 |
+
"reward_std": 0.30205987617373464,
|
| 2035 |
+
"rewards/accuracy_reward": 0.7025000074878335,
|
| 2036 |
+
"rewards/format_reward": 0.9725000008940696,
|
| 2037 |
+
"step": 1560
|
| 2038 |
+
},
|
| 2039 |
+
{
|
| 2040 |
+
"completion_length": 257.5050031661987,
|
| 2041 |
+
"epoch": 2.0933333333333333,
|
| 2042 |
+
"grad_norm": 0.5869216918945312,
|
| 2043 |
+
"kl": 1.6803466796875,
|
| 2044 |
+
"learning_rate": 7.600991262207221e-07,
|
| 2045 |
+
"loss": 0.1555,
|
| 2046 |
+
"reward": 1.542500025033951,
|
| 2047 |
+
"reward_std": 0.3918322518467903,
|
| 2048 |
+
"rewards/accuracy_reward": 0.6312500072643161,
|
| 2049 |
+
"rewards/format_reward": 0.9112500101327896,
|
| 2050 |
+
"step": 1570
|
| 2051 |
+
},
|
| 2052 |
+
{
|
| 2053 |
+
"completion_length": 257.85625553131104,
|
| 2054 |
+
"epoch": 2.1066666666666665,
|
| 2055 |
+
"grad_norm": 0.7470917105674744,
|
| 2056 |
+
"kl": 1.1965576171875,
|
| 2057 |
+
"learning_rate": 7.399460020596266e-07,
|
| 2058 |
+
"loss": 0.1217,
|
| 2059 |
+
"reward": 1.4912500128149986,
|
| 2060 |
+
"reward_std": 0.44596712924540044,
|
| 2061 |
+
"rewards/accuracy_reward": 0.5762500122189522,
|
| 2062 |
+
"rewards/format_reward": 0.9150000065565109,
|
| 2063 |
+
"step": 1580
|
| 2064 |
+
},
|
| 2065 |
+
{
|
| 2066 |
+
"completion_length": 249.50250511169435,
|
| 2067 |
+
"epoch": 2.12,
|
| 2068 |
+
"grad_norm": 1.4397474527359009,
|
| 2069 |
+
"kl": 1.5828369140625,
|
| 2070 |
+
"learning_rate": 7.19975808106177e-07,
|
| 2071 |
+
"loss": 0.1932,
|
| 2072 |
+
"reward": 1.5000000178813935,
|
| 2073 |
+
"reward_std": 0.44045890420675277,
|
| 2074 |
+
"rewards/accuracy_reward": 0.5787500116042793,
|
| 2075 |
+
"rewards/format_reward": 0.921250007301569,
|
| 2076 |
+
"step": 1590
|
| 2077 |
+
},
|
| 2078 |
+
{
|
| 2079 |
+
"completion_length": 255.7712547302246,
|
| 2080 |
+
"epoch": 2.1333333333333333,
|
| 2081 |
+
"grad_norm": 0.47938272356987,
|
| 2082 |
+
"kl": 1.07216796875,
|
| 2083 |
+
"learning_rate": 7.001933507974634e-07,
|
| 2084 |
+
"loss": 0.1435,
|
| 2085 |
+
"reward": 1.4987500235438347,
|
| 2086 |
+
"reward_std": 0.4268573712557554,
|
| 2087 |
+
"rewards/accuracy_reward": 0.5737500079907477,
|
| 2088 |
+
"rewards/format_reward": 0.9250000044703484,
|
| 2089 |
+
"step": 1600
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"completion_length": 245.55125331878662,
|
| 2093 |
+
"epoch": 2.1466666666666665,
|
| 2094 |
+
"grad_norm": 0.8688609600067139,
|
| 2095 |
+
"kl": 1.22481689453125,
|
| 2096 |
+
"learning_rate": 6.806033913860195e-07,
|
| 2097 |
+
"loss": 0.1412,
|
| 2098 |
+
"reward": 1.4875000298023224,
|
| 2099 |
+
"reward_std": 0.41953446678817274,
|
| 2100 |
+
"rewards/accuracy_reward": 0.5675000123679638,
|
| 2101 |
+
"rewards/format_reward": 0.9200000070035458,
|
| 2102 |
+
"step": 1610
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"completion_length": 250.85125579833985,
|
| 2106 |
+
"epoch": 2.16,
|
| 2107 |
+
"grad_norm": 0.5293228030204773,
|
| 2108 |
+
"kl": 0.846044921875,
|
| 2109 |
+
"learning_rate": 6.6121064479388e-07,
|
| 2110 |
+
"loss": 0.1231,
|
| 2111 |
+
"reward": 1.5712500154972076,
|
| 2112 |
+
"reward_std": 0.38107405565679076,
|
| 2113 |
+
"rewards/accuracy_reward": 0.6225000062957406,
|
| 2114 |
+
"rewards/format_reward": 0.9487500011920929,
|
| 2115 |
+
"step": 1620
|
| 2116 |
+
},
|
| 2117 |
+
{
|
| 2118 |
+
"completion_length": 252.32750434875487,
|
| 2119 |
+
"epoch": 2.1733333333333333,
|
| 2120 |
+
"grad_norm": 1.0724272727966309,
|
| 2121 |
+
"kl": 1.2016357421875,
|
| 2122 |
+
"learning_rate": 6.420197784777925e-07,
|
| 2123 |
+
"loss": 0.1292,
|
| 2124 |
+
"reward": 1.4837500169873237,
|
| 2125 |
+
"reward_std": 0.4388523455709219,
|
| 2126 |
+
"rewards/accuracy_reward": 0.5450000113807618,
|
| 2127 |
+
"rewards/format_reward": 0.9387500062584877,
|
| 2128 |
+
"step": 1630
|
| 2129 |
+
},
|
| 2130 |
+
{
|
| 2131 |
+
"completion_length": 262.9075046539307,
|
| 2132 |
+
"epoch": 2.1866666666666665,
|
| 2133 |
+
"grad_norm": 0.852165699005127,
|
| 2134 |
+
"kl": 1.47001953125,
|
| 2135 |
+
"learning_rate": 6.230354113058505e-07,
|
| 2136 |
+
"loss": 0.1207,
|
| 2137 |
+
"reward": 1.438750022649765,
|
| 2138 |
+
"reward_std": 0.47429373003542424,
|
| 2139 |
+
"rewards/accuracy_reward": 0.5275000119581819,
|
| 2140 |
+
"rewards/format_reward": 0.9112500056624413,
|
| 2141 |
+
"step": 1640
|
| 2142 |
+
},
|
| 2143 |
+
{
|
| 2144 |
+
"completion_length": 237.82875328063966,
|
| 2145 |
+
"epoch": 2.2,
|
| 2146 |
+
"grad_norm": 0.7865124344825745,
|
| 2147 |
+
"kl": 0.8052978515625,
|
| 2148 |
+
"learning_rate": 6.04262112445821e-07,
|
| 2149 |
+
"loss": 0.0906,
|
| 2150 |
+
"reward": 1.5237500220537186,
|
| 2151 |
+
"reward_std": 0.35442090816795824,
|
| 2152 |
+
"rewards/accuracy_reward": 0.5787500074133277,
|
| 2153 |
+
"rewards/format_reward": 0.9450000032782555,
|
| 2154 |
+
"step": 1650
|
| 2155 |
+
},
|
| 2156 |
+
{
|
| 2157 |
+
"completion_length": 244.2200050354004,
|
| 2158 |
+
"epoch": 2.2133333333333334,
|
| 2159 |
+
"grad_norm": 2.7681257724761963,
|
| 2160 |
+
"kl": 1.0701416015625,
|
| 2161 |
+
"learning_rate": 5.857044002654356e-07,
|
| 2162 |
+
"loss": 0.1363,
|
| 2163 |
+
"reward": 1.5400000184774398,
|
| 2164 |
+
"reward_std": 0.41701370403170585,
|
| 2165 |
+
"rewards/accuracy_reward": 0.6250000096857548,
|
| 2166 |
+
"rewards/format_reward": 0.9150000095367432,
|
| 2167 |
+
"step": 1660
|
| 2168 |
+
},
|
| 2169 |
+
{
|
| 2170 |
+
"completion_length": 236.56875324249268,
|
| 2171 |
+
"epoch": 2.2266666666666666,
|
| 2172 |
+
"grad_norm": 1.139227032661438,
|
| 2173 |
+
"kl": 1.362841796875,
|
| 2174 |
+
"learning_rate": 5.673667412449069e-07,
|
| 2175 |
+
"loss": 0.1759,
|
| 2176 |
+
"reward": 1.4887500166893006,
|
| 2177 |
+
"reward_std": 0.46174298636615274,
|
| 2178 |
+
"rewards/accuracy_reward": 0.5825000075623393,
|
| 2179 |
+
"rewards/format_reward": 0.9062500104308129,
|
| 2180 |
+
"step": 1670
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"completion_length": 251.44250373840333,
|
| 2184 |
+
"epoch": 2.24,
|
| 2185 |
+
"grad_norm": 1.1506483554840088,
|
| 2186 |
+
"kl": 3.351171875,
|
| 2187 |
+
"learning_rate": 5.492535489019345e-07,
|
| 2188 |
+
"loss": 0.3264,
|
| 2189 |
+
"reward": 1.5837500229477883,
|
| 2190 |
+
"reward_std": 0.4318976990878582,
|
| 2191 |
+
"rewards/accuracy_reward": 0.6537500128149987,
|
| 2192 |
+
"rewards/format_reward": 0.9300000041723251,
|
| 2193 |
+
"step": 1680
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"completion_length": 237.26500434875487,
|
| 2197 |
+
"epoch": 2.2533333333333334,
|
| 2198 |
+
"grad_norm": 0.24002552032470703,
|
| 2199 |
+
"kl": 0.6318603515625,
|
| 2200 |
+
"learning_rate": 5.313691827294569e-07,
|
| 2201 |
+
"loss": 0.0718,
|
| 2202 |
+
"reward": 1.6012500166893004,
|
| 2203 |
+
"reward_std": 0.3187932658940554,
|
| 2204 |
+
"rewards/accuracy_reward": 0.6325000114738941,
|
| 2205 |
+
"rewards/format_reward": 0.9687500029802323,
|
| 2206 |
+
"step": 1690
|
| 2207 |
+
},
|
| 2208 |
+
{
|
| 2209 |
+
"completion_length": 239.81500282287598,
|
| 2210 |
+
"epoch": 2.2666666666666666,
|
| 2211 |
+
"grad_norm": 0.3545837998390198,
|
| 2212 |
+
"kl": 0.5182861328125,
|
| 2213 |
+
"learning_rate": 5.137179471464047e-07,
|
| 2214 |
+
"loss": 0.0914,
|
| 2215 |
+
"reward": 1.5900000303983688,
|
| 2216 |
+
"reward_std": 0.36133957989513876,
|
| 2217 |
+
"rewards/accuracy_reward": 0.6212500061839819,
|
| 2218 |
+
"rewards/format_reward": 0.9687500029802323,
|
| 2219 |
+
"step": 1700
|
| 2220 |
+
},
|
| 2221 |
+
{
|
| 2222 |
+
"completion_length": 239.17750453948975,
|
| 2223 |
+
"epoch": 2.2800000000000002,
|
| 2224 |
+
"grad_norm": 0.3821852505207062,
|
| 2225 |
+
"kl": 0.6372802734375,
|
| 2226 |
+
"learning_rate": 4.963040904617131e-07,
|
| 2227 |
+
"loss": 0.0939,
|
| 2228 |
+
"reward": 1.532500021159649,
|
| 2229 |
+
"reward_std": 0.3489324226975441,
|
| 2230 |
+
"rewards/accuracy_reward": 0.580000011343509,
|
| 2231 |
+
"rewards/format_reward": 0.9525000095367432,
|
| 2232 |
+
"step": 1710
|
| 2233 |
+
},
|
| 2234 |
+
{
|
| 2235 |
+
"completion_length": 251.4825029373169,
|
| 2236 |
+
"epoch": 2.2933333333333334,
|
| 2237 |
+
"grad_norm": 1.0452297925949097,
|
| 2238 |
+
"kl": 1.1371826171875,
|
| 2239 |
+
"learning_rate": 4.791318038518345e-07,
|
| 2240 |
+
"loss": 0.1565,
|
| 2241 |
+
"reward": 1.4887500151991844,
|
| 2242 |
+
"reward_std": 0.4074371732771397,
|
| 2243 |
+
"rewards/accuracy_reward": 0.5575000095181167,
|
| 2244 |
+
"rewards/format_reward": 0.9312500029802322,
|
| 2245 |
+
"step": 1720
|
| 2246 |
+
},
|
| 2247 |
+
{
|
| 2248 |
+
"completion_length": 252.94750308990479,
|
| 2249 |
+
"epoch": 2.3066666666666666,
|
| 2250 |
+
"grad_norm": 1.300804853439331,
|
| 2251 |
+
"kl": 1.0220703125,
|
| 2252 |
+
"learning_rate": 4.6220522035200607e-07,
|
| 2253 |
+
"loss": 0.1473,
|
| 2254 |
+
"reward": 1.4225000247359276,
|
| 2255 |
+
"reward_std": 0.4227703019976616,
|
| 2256 |
+
"rewards/accuracy_reward": 0.4975000057369471,
|
| 2257 |
+
"rewards/format_reward": 0.9250000044703484,
|
| 2258 |
+
"step": 1730
|
| 2259 |
+
},
|
| 2260 |
+
{
|
| 2261 |
+
"completion_length": 245.8537540435791,
|
| 2262 |
+
"epoch": 2.32,
|
| 2263 |
+
"grad_norm": 1.0373808145523071,
|
| 2264 |
+
"kl": 1.1215576171875,
|
| 2265 |
+
"learning_rate": 4.4552841386150737e-07,
|
| 2266 |
+
"loss": 0.1625,
|
| 2267 |
+
"reward": 1.570000010728836,
|
| 2268 |
+
"reward_std": 0.44271881096065047,
|
| 2269 |
+
"rewards/accuracy_reward": 0.6412500072270632,
|
| 2270 |
+
"rewards/format_reward": 0.9287500068545341,
|
| 2271 |
+
"step": 1740
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"completion_length": 242.66250534057616,
|
| 2275 |
+
"epoch": 2.3333333333333335,
|
| 2276 |
+
"grad_norm": 1.0271825790405273,
|
| 2277 |
+
"kl": 1.0448974609375,
|
| 2278 |
+
"learning_rate": 4.291053981631517e-07,
|
| 2279 |
+
"loss": 0.1839,
|
| 2280 |
+
"reward": 1.5500000163912773,
|
| 2281 |
+
"reward_std": 0.4699274588376284,
|
| 2282 |
+
"rewards/accuracy_reward": 0.6150000074878335,
|
| 2283 |
+
"rewards/format_reward": 0.9350000068545341,
|
| 2284 |
+
"step": 1750
|
| 2285 |
+
},
|
| 2286 |
+
{
|
| 2287 |
+
"completion_length": 243.92625598907472,
|
| 2288 |
+
"epoch": 2.3466666666666667,
|
| 2289 |
+
"grad_norm": 0.7303493022918701,
|
| 2290 |
+
"kl": 1.138134765625,
|
| 2291 |
+
"learning_rate": 4.129401259572467e-07,
|
| 2292 |
+
"loss": 0.1799,
|
| 2293 |
+
"reward": 1.595000022649765,
|
| 2294 |
+
"reward_std": 0.41913925893604753,
|
| 2295 |
+
"rewards/accuracy_reward": 0.6700000133365392,
|
| 2296 |
+
"rewards/format_reward": 0.9250000059604645,
|
| 2297 |
+
"step": 1760
|
| 2298 |
+
},
|
| 2299 |
+
{
|
| 2300 |
+
"completion_length": 246.7412540435791,
|
| 2301 |
+
"epoch": 2.36,
|
| 2302 |
+
"grad_norm": 0.9631237983703613,
|
| 2303 |
+
"kl": 0.8330322265625,
|
| 2304 |
+
"learning_rate": 3.9703648791025716e-07,
|
| 2305 |
+
"loss": 0.1262,
|
| 2306 |
+
"reward": 1.5162500217556953,
|
| 2307 |
+
"reward_std": 0.3487443562597036,
|
| 2308 |
+
"rewards/accuracy_reward": 0.5662500067614019,
|
| 2309 |
+
"rewards/format_reward": 0.95,
|
| 2310 |
+
"step": 1770
|
| 2311 |
+
},
|
| 2312 |
+
{
|
| 2313 |
+
"completion_length": 232.69125442504884,
|
| 2314 |
+
"epoch": 2.3733333333333335,
|
| 2315 |
+
"grad_norm": 0.3894151449203491,
|
| 2316 |
+
"kl": 0.7792236328125,
|
| 2317 |
+
"learning_rate": 3.813983117183973e-07,
|
| 2318 |
+
"loss": 0.1313,
|
| 2319 |
+
"reward": 1.5537500232458115,
|
| 2320 |
+
"reward_std": 0.36217943094670774,
|
| 2321 |
+
"rewards/accuracy_reward": 0.6062500105239451,
|
| 2322 |
+
"rewards/format_reward": 0.947500005364418,
|
| 2323 |
+
"step": 1780
|
| 2324 |
+
},
|
| 2325 |
+
{
|
| 2326 |
+
"completion_length": 248.34000549316406,
|
| 2327 |
+
"epoch": 2.3866666666666667,
|
| 2328 |
+
"grad_norm": 1.5399941205978394,
|
| 2329 |
+
"kl": 0.61976318359375,
|
| 2330 |
+
"learning_rate": 3.660293611863782e-07,
|
| 2331 |
+
"loss": 0.1232,
|
| 2332 |
+
"reward": 1.5750000208616257,
|
| 2333 |
+
"reward_std": 0.3620978184044361,
|
| 2334 |
+
"rewards/accuracy_reward": 0.6150000086054206,
|
| 2335 |
+
"rewards/format_reward": 0.9600000008940697,
|
| 2336 |
+
"step": 1790
|
| 2337 |
+
},
|
| 2338 |
+
{
|
| 2339 |
+
"completion_length": 256.740007019043,
|
| 2340 |
+
"epoch": 2.4,
|
| 2341 |
+
"grad_norm": 1.343291163444519,
|
| 2342 |
+
"kl": 0.779443359375,
|
| 2343 |
+
"learning_rate": 3.5093333532153313e-07,
|
| 2344 |
+
"loss": 0.1479,
|
| 2345 |
+
"reward": 1.5312500238418578,
|
| 2346 |
+
"reward_std": 0.4155931018292904,
|
| 2347 |
+
"rewards/accuracy_reward": 0.6075000097043812,
|
| 2348 |
+
"rewards/format_reward": 0.9237500041723251,
|
| 2349 |
+
"step": 1800
|
| 2350 |
+
},
|
| 2351 |
+
{
|
| 2352 |
+
"completion_length": 254.71500473022462,
|
| 2353 |
+
"epoch": 2.413333333333333,
|
| 2354 |
+
"grad_norm": 0.8221819400787354,
|
| 2355 |
+
"kl": 0.804345703125,
|
| 2356 |
+
"learning_rate": 3.361138674435386e-07,
|
| 2357 |
+
"loss": 0.1537,
|
| 2358 |
+
"reward": 1.520000022649765,
|
| 2359 |
+
"reward_std": 0.39584226049482824,
|
| 2360 |
+
"rewards/accuracy_reward": 0.5900000093504787,
|
| 2361 |
+
"rewards/format_reward": 0.9300000071525574,
|
| 2362 |
+
"step": 1810
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"completion_length": 225.73875350952147,
|
| 2366 |
+
"epoch": 2.4266666666666667,
|
| 2367 |
+
"grad_norm": 0.5089777112007141,
|
| 2368 |
+
"kl": 0.951416015625,
|
| 2369 |
+
"learning_rate": 3.215745243099449e-07,
|
| 2370 |
+
"loss": 0.0989,
|
| 2371 |
+
"reward": 1.5050000190734862,
|
| 2372 |
+
"reward_std": 0.34333288110792637,
|
| 2373 |
+
"rewards/accuracy_reward": 0.5612500077113509,
|
| 2374 |
+
"rewards/format_reward": 0.9437500059604644,
|
| 2375 |
+
"step": 1820
|
| 2376 |
+
},
|
| 2377 |
+
{
|
| 2378 |
+
"completion_length": 244.07000427246095,
|
| 2379 |
+
"epoch": 2.44,
|
| 2380 |
+
"grad_norm": 0.4870164096355438,
|
| 2381 |
+
"kl": 0.99180908203125,
|
| 2382 |
+
"learning_rate": 3.073188052577282e-07,
|
| 2383 |
+
"loss": 0.1526,
|
| 2384 |
+
"reward": 1.5562500178813934,
|
| 2385 |
+
"reward_std": 0.424020304530859,
|
| 2386 |
+
"rewards/accuracy_reward": 0.6175000119954348,
|
| 2387 |
+
"rewards/format_reward": 0.9387500047683716,
|
| 2388 |
+
"step": 1830
|
| 2389 |
+
},
|
| 2390 |
+
{
|
| 2391 |
+
"completion_length": 233.82125263214112,
|
| 2392 |
+
"epoch": 2.453333333333333,
|
| 2393 |
+
"grad_norm": 1.4273000955581665,
|
| 2394 |
+
"kl": 1.02783203125,
|
| 2395 |
+
"learning_rate": 2.93350141361067e-07,
|
| 2396 |
+
"loss": 0.1579,
|
| 2397 |
+
"reward": 1.5900000289082528,
|
| 2398 |
+
"reward_std": 0.4301666900515556,
|
| 2399 |
+
"rewards/accuracy_reward": 0.6575000090524554,
|
| 2400 |
+
"rewards/format_reward": 0.9325000047683716,
|
| 2401 |
+
"step": 1840
|
| 2402 |
+
},
|
| 2403 |
+
{
|
| 2404 |
+
"completion_length": 230.63875503540038,
|
| 2405 |
+
"epoch": 2.466666666666667,
|
| 2406 |
+
"grad_norm": 0.8823533654212952,
|
| 2407 |
+
"kl": 0.8214599609375,
|
| 2408 |
+
"learning_rate": 2.796718946055488e-07,
|
| 2409 |
+
"loss": 0.1264,
|
| 2410 |
+
"reward": 1.5850000232458115,
|
| 2411 |
+
"reward_std": 0.3670020330697298,
|
| 2412 |
+
"rewards/accuracy_reward": 0.6350000068545342,
|
| 2413 |
+
"rewards/format_reward": 0.9500000029802322,
|
| 2414 |
+
"step": 1850
|
| 2415 |
+
},
|
| 2416 |
+
{
|
| 2417 |
+
"completion_length": 238.70250186920165,
|
| 2418 |
+
"epoch": 2.48,
|
| 2419 |
+
"grad_norm": 0.6716477274894714,
|
| 2420 |
+
"kl": 0.7898681640625,
|
| 2421 |
+
"learning_rate": 2.6628735707900655e-07,
|
| 2422 |
+
"loss": 0.119,
|
| 2423 |
+
"reward": 1.6300000220537185,
|
| 2424 |
+
"reward_std": 0.34950714409351347,
|
| 2425 |
+
"rewards/accuracy_reward": 0.6787500105798244,
|
| 2426 |
+
"rewards/format_reward": 0.9512500062584877,
|
| 2427 |
+
"step": 1860
|
| 2428 |
+
},
|
| 2429 |
+
{
|
| 2430 |
+
"completion_length": 255.3150053024292,
|
| 2431 |
+
"epoch": 2.493333333333333,
|
| 2432 |
+
"grad_norm": 0.72442227602005,
|
| 2433 |
+
"kl": 0.9836181640625,
|
| 2434 |
+
"learning_rate": 2.531997501791779e-07,
|
| 2435 |
+
"loss": 0.1863,
|
| 2436 |
+
"reward": 1.5250000268220902,
|
| 2437 |
+
"reward_std": 0.4403968006372452,
|
| 2438 |
+
"rewards/accuracy_reward": 0.5950000144541263,
|
| 2439 |
+
"rewards/format_reward": 0.9300000086426735,
|
| 2440 |
+
"step": 1870
|
| 2441 |
+
},
|
| 2442 |
+
{
|
| 2443 |
+
"completion_length": 269.0000047683716,
|
| 2444 |
+
"epoch": 2.506666666666667,
|
| 2445 |
+
"grad_norm": 0.5673468112945557,
|
| 2446 |
+
"kl": 0.9330322265625,
|
| 2447 |
+
"learning_rate": 2.4041222383837535e-07,
|
| 2448 |
+
"loss": 0.1553,
|
| 2449 |
+
"reward": 1.537500023841858,
|
| 2450 |
+
"reward_std": 0.4138102397322655,
|
| 2451 |
+
"rewards/accuracy_reward": 0.6012500094249844,
|
| 2452 |
+
"rewards/format_reward": 0.936250002682209,
|
| 2453 |
+
"step": 1880
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"completion_length": 285.29625511169434,
|
| 2457 |
+
"epoch": 2.52,
|
| 2458 |
+
"grad_norm": 0.7273412942886353,
|
| 2459 |
+
"kl": 1.2927001953125,
|
| 2460 |
+
"learning_rate": 2.2792785576536108e-07,
|
| 2461 |
+
"loss": 0.2201,
|
| 2462 |
+
"reward": 1.441250018775463,
|
| 2463 |
+
"reward_std": 0.47595637403428553,
|
| 2464 |
+
"rewards/accuracy_reward": 0.5312500111758709,
|
| 2465 |
+
"rewards/format_reward": 0.9100000083446502,
|
| 2466 |
+
"step": 1890
|
| 2467 |
+
},
|
| 2468 |
+
{
|
| 2469 |
+
"completion_length": 254.1075038909912,
|
| 2470 |
+
"epoch": 2.533333333333333,
|
| 2471 |
+
"grad_norm": 0.752768874168396,
|
| 2472 |
+
"kl": 1.1075439453125,
|
| 2473 |
+
"learning_rate": 2.1574965070460045e-07,
|
| 2474 |
+
"loss": 0.152,
|
| 2475 |
+
"reward": 1.6112500235438347,
|
| 2476 |
+
"reward_std": 0.40718725696206093,
|
| 2477 |
+
"rewards/accuracy_reward": 0.6700000101700425,
|
| 2478 |
+
"rewards/format_reward": 0.9412500068545342,
|
| 2479 |
+
"step": 1900
|
| 2480 |
+
},
|
| 2481 |
+
{
|
| 2482 |
+
"completion_length": 234.2762550354004,
|
| 2483 |
+
"epoch": 2.546666666666667,
|
| 2484 |
+
"grad_norm": 0.5253682136535645,
|
| 2485 |
+
"kl": 0.95108642578125,
|
| 2486 |
+
"learning_rate": 2.0388053971307929e-07,
|
| 2487 |
+
"loss": 0.1638,
|
| 2488 |
+
"reward": 1.605000016093254,
|
| 2489 |
+
"reward_std": 0.39718882702291014,
|
| 2490 |
+
"rewards/accuracy_reward": 0.6737500067800284,
|
| 2491 |
+
"rewards/format_reward": 0.9312500044703483,
|
| 2492 |
+
"step": 1910
|
| 2493 |
+
},
|
| 2494 |
+
{
|
| 2495 |
+
"completion_length": 255.07750434875487,
|
| 2496 |
+
"epoch": 2.56,
|
| 2497 |
+
"grad_norm": 0.5825310945510864,
|
| 2498 |
+
"kl": 1.0739501953125,
|
| 2499 |
+
"learning_rate": 1.9232337945485655e-07,
|
| 2500 |
+
"loss": 0.1466,
|
| 2501 |
+
"reward": 1.5462500244379043,
|
| 2502 |
+
"reward_std": 0.4311613071709871,
|
| 2503 |
+
"rewards/accuracy_reward": 0.6100000113248825,
|
| 2504 |
+
"rewards/format_reward": 0.9362500086426735,
|
| 2505 |
+
"step": 1920
|
| 2506 |
+
},
|
| 2507 |
+
{
|
| 2508 |
+
"completion_length": 262.95500526428225,
|
| 2509 |
+
"epoch": 2.5733333333333333,
|
| 2510 |
+
"grad_norm": 1.1008692979812622,
|
| 2511 |
+
"kl": 8.222119140625,
|
| 2512 |
+
"learning_rate": 1.810809515135184e-07,
|
| 2513 |
+
"loss": 0.4634,
|
| 2514 |
+
"reward": 1.4800000235438346,
|
| 2515 |
+
"reward_std": 0.4289998158812523,
|
| 2516 |
+
"rewards/accuracy_reward": 0.5450000076554715,
|
| 2517 |
+
"rewards/format_reward": 0.9350000068545341,
|
| 2518 |
+
"step": 1930
|
| 2519 |
+
},
|
| 2520 |
+
{
|
| 2521 |
+
"completion_length": 239.78375244140625,
|
| 2522 |
+
"epoch": 2.586666666666667,
|
| 2523 |
+
"grad_norm": 0.9321441054344177,
|
| 2524 |
+
"kl": 1.1059326171875,
|
| 2525 |
+
"learning_rate": 1.701559617227084e-07,
|
| 2526 |
+
"loss": 0.1856,
|
| 2527 |
+
"reward": 1.5887500256299973,
|
| 2528 |
+
"reward_std": 0.413610565662384,
|
| 2529 |
+
"rewards/accuracy_reward": 0.6537500060163438,
|
| 2530 |
+
"rewards/format_reward": 0.9350000038743019,
|
| 2531 |
+
"step": 1940
|
| 2532 |
+
},
|
| 2533 |
+
{
|
| 2534 |
+
"completion_length": 267.56750259399416,
|
| 2535 |
+
"epoch": 2.6,
|
| 2536 |
+
"grad_norm": 0.4667798578739166,
|
| 2537 |
+
"kl": 0.897509765625,
|
| 2538 |
+
"learning_rate": 1.5955103951488177e-07,
|
| 2539 |
+
"loss": 0.1291,
|
| 2540 |
+
"reward": 1.512500023841858,
|
| 2541 |
+
"reward_std": 0.36861380077898503,
|
| 2542 |
+
"rewards/accuracy_reward": 0.5650000072084367,
|
| 2543 |
+
"rewards/format_reward": 0.9475000098347663,
|
| 2544 |
+
"step": 1950
|
| 2545 |
+
},
|
| 2546 |
+
{
|
| 2547 |
+
"completion_length": 244.6812545776367,
|
| 2548 |
+
"epoch": 2.6133333333333333,
|
| 2549 |
+
"grad_norm": 1.1859592199325562,
|
| 2550 |
+
"kl": 0.7323974609375,
|
| 2551 |
+
"learning_rate": 1.4926873728845668e-07,
|
| 2552 |
+
"loss": 0.132,
|
| 2553 |
+
"reward": 1.6525000289082528,
|
| 2554 |
+
"reward_std": 0.3647048894315958,
|
| 2555 |
+
"rewards/accuracy_reward": 0.7000000123865903,
|
| 2556 |
+
"rewards/format_reward": 0.9525000050663948,
|
| 2557 |
+
"step": 1960
|
| 2558 |
+
},
|
| 2559 |
+
{
|
| 2560 |
+
"completion_length": 250.45750370025635,
|
| 2561 |
+
"epoch": 2.626666666666667,
|
| 2562 |
+
"grad_norm": 0.6404736042022705,
|
| 2563 |
+
"kl": 0.98271484375,
|
| 2564 |
+
"learning_rate": 1.3931152979349926e-07,
|
| 2565 |
+
"loss": 0.1389,
|
| 2566 |
+
"reward": 1.5887500122189522,
|
| 2567 |
+
"reward_std": 0.4178105805069208,
|
| 2568 |
+
"rewards/accuracy_reward": 0.6537500105798244,
|
| 2569 |
+
"rewards/format_reward": 0.9350000023841858,
|
| 2570 |
+
"step": 1970
|
| 2571 |
+
},
|
| 2572 |
+
{
|
| 2573 |
+
"completion_length": 241.34000396728516,
|
| 2574 |
+
"epoch": 2.64,
|
| 2575 |
+
"grad_norm": 1.1606582403182983,
|
| 2576 |
+
"kl": 0.8234375,
|
| 2577 |
+
"learning_rate": 1.2968181353609853e-07,
|
| 2578 |
+
"loss": 0.1034,
|
| 2579 |
+
"reward": 1.6037500262260438,
|
| 2580 |
+
"reward_std": 0.3661252219229937,
|
| 2581 |
+
"rewards/accuracy_reward": 0.6487500038929284,
|
| 2582 |
+
"rewards/format_reward": 0.9550000041723251,
|
| 2583 |
+
"step": 1980
|
| 2584 |
+
},
|
| 2585 |
+
{
|
| 2586 |
+
"completion_length": 258.2050045013428,
|
| 2587 |
+
"epoch": 2.6533333333333333,
|
| 2588 |
+
"grad_norm": 0.9993649125099182,
|
| 2589 |
+
"kl": 0.7095947265625,
|
| 2590 |
+
"learning_rate": 1.2038190620157685e-07,
|
| 2591 |
+
"loss": 0.0885,
|
| 2592 |
+
"reward": 1.6100000202655793,
|
| 2593 |
+
"reward_std": 0.3543590843677521,
|
| 2594 |
+
"rewards/accuracy_reward": 0.6512500140815973,
|
| 2595 |
+
"rewards/format_reward": 0.9587500020861626,
|
| 2596 |
+
"step": 1990
|
| 2597 |
+
},
|
| 2598 |
+
{
|
| 2599 |
+
"completion_length": 248.90000267028807,
|
| 2600 |
+
"epoch": 2.6666666666666665,
|
| 2601 |
+
"grad_norm": 0.7114527821540833,
|
| 2602 |
+
"kl": 486.95928955078125,
|
| 2603 |
+
"learning_rate": 1.114140460966645e-07,
|
| 2604 |
+
"loss": 20.4763,
|
| 2605 |
+
"reward": 1.6000000208616256,
|
| 2606 |
+
"reward_std": 0.3433480467647314,
|
| 2607 |
+
"rewards/accuracy_reward": 0.6437500057741999,
|
| 2608 |
+
"rewards/format_reward": 0.95625,
|
| 2609 |
+
"step": 2000
|
| 2610 |
+
},
|
| 2611 |
+
{
|
| 2612 |
+
"completion_length": 242.95375537872314,
|
| 2613 |
+
"epoch": 2.68,
|
| 2614 |
+
"grad_norm": 1.368294596672058,
|
| 2615 |
+
"kl": 0.9123046875,
|
| 2616 |
+
"learning_rate": 1.0278039161078634e-07,
|
| 2617 |
+
"loss": 0.1081,
|
| 2618 |
+
"reward": 1.583750031888485,
|
| 2619 |
+
"reward_std": 0.3553517021238804,
|
| 2620 |
+
"rewards/accuracy_reward": 0.6350000066682696,
|
| 2621 |
+
"rewards/format_reward": 0.9487500056624413,
|
| 2622 |
+
"step": 2010
|
| 2623 |
+
},
|
| 2624 |
+
{
|
| 2625 |
+
"completion_length": 267.4425052642822,
|
| 2626 |
+
"epoch": 2.6933333333333334,
|
| 2627 |
+
"grad_norm": 0.9436002969741821,
|
| 2628 |
+
"kl": 1.2000244140625,
|
| 2629 |
+
"learning_rate": 9.4483020696578e-08,
|
| 2630 |
+
"loss": 0.1847,
|
| 2631 |
+
"reward": 1.4937500163912774,
|
| 2632 |
+
"reward_std": 0.42551035098731516,
|
| 2633 |
+
"rewards/accuracy_reward": 0.5700000072829425,
|
| 2634 |
+
"rewards/format_reward": 0.9237500086426735,
|
| 2635 |
+
"step": 2020
|
| 2636 |
+
},
|
| 2637 |
+
{
|
| 2638 |
+
"completion_length": 261.7937522888184,
|
| 2639 |
+
"epoch": 2.7066666666666666,
|
| 2640 |
+
"grad_norm": 0.832007884979248,
|
| 2641 |
+
"kl": 1.18310546875,
|
| 2642 |
+
"learning_rate": 8.652393036976158e-08,
|
| 2643 |
+
"loss": 0.1359,
|
| 2644 |
+
"reward": 1.4962500289082528,
|
| 2645 |
+
"reward_std": 0.4743993539363146,
|
| 2646 |
+
"rewards/accuracy_reward": 0.5837500118650496,
|
| 2647 |
+
"rewards/format_reward": 0.9125000044703484,
|
| 2648 |
+
"step": 2030
|
| 2649 |
+
},
|
| 2650 |
+
{
|
| 2651 |
+
"completion_length": 248.56500606536866,
|
| 2652 |
+
"epoch": 2.7199999999999998,
|
| 2653 |
+
"grad_norm": 0.9683050513267517,
|
| 2654 |
+
"kl": 1.044775390625,
|
| 2655 |
+
"learning_rate": 7.89050362285062e-08,
|
| 2656 |
+
"loss": 0.1735,
|
| 2657 |
+
"reward": 1.5050000220537185,
|
| 2658 |
+
"reward_std": 0.4250973217189312,
|
| 2659 |
+
"rewards/accuracy_reward": 0.5762500053271651,
|
| 2660 |
+
"rewards/format_reward": 0.928750005364418,
|
| 2661 |
+
"step": 2040
|
| 2662 |
+
},
|
| 2663 |
+
{
|
| 2664 |
+
"completion_length": 261.2425033569336,
|
| 2665 |
+
"epoch": 2.7333333333333334,
|
| 2666 |
+
"grad_norm": 0.8732206225395203,
|
| 2667 |
+
"kl": 2.1559326171875,
|
| 2668 |
+
"learning_rate": 7.162817199237703e-08,
|
| 2669 |
+
"loss": 0.228,
|
| 2670 |
+
"reward": 1.4837500289082528,
|
| 2671 |
+
"reward_std": 0.4267508018761873,
|
| 2672 |
+
"rewards/accuracy_reward": 0.5775000069290399,
|
| 2673 |
+
"rewards/format_reward": 0.9062500104308129,
|
| 2674 |
+
"step": 2050
|
| 2675 |
+
},
|
| 2676 |
+
{
|
| 2677 |
+
"completion_length": 264.16000480651854,
|
| 2678 |
+
"epoch": 2.7466666666666666,
|
| 2679 |
+
"grad_norm": 0.6869509220123291,
|
| 2680 |
+
"kl": 0.93458251953125,
|
| 2681 |
+
"learning_rate": 6.469508906099792e-08,
|
| 2682 |
+
"loss": 0.1569,
|
| 2683 |
+
"reward": 1.5300000235438347,
|
| 2684 |
+
"reward_std": 0.43696386478841304,
|
| 2685 |
+
"rewards/accuracy_reward": 0.5937500102445483,
|
| 2686 |
+
"rewards/format_reward": 0.9362500056624412,
|
| 2687 |
+
"step": 2060
|
| 2688 |
+
},
|
| 2689 |
+
{
|
| 2690 |
+
"completion_length": 238.19875507354737,
|
| 2691 |
+
"epoch": 2.76,
|
| 2692 |
+
"grad_norm": 1.0900628566741943,
|
| 2693 |
+
"kl": 0.9701171875,
|
| 2694 |
+
"learning_rate": 5.810745609252166e-08,
|
| 2695 |
+
"loss": 0.116,
|
| 2696 |
+
"reward": 1.491250030696392,
|
| 2697 |
+
"reward_std": 0.35836701430380347,
|
| 2698 |
+
"rewards/accuracy_reward": 0.5612500054761768,
|
| 2699 |
+
"rewards/format_reward": 0.9300000026822091,
|
| 2700 |
+
"step": 2070
|
| 2701 |
+
},
|
| 2702 |
+
{
|
| 2703 |
+
"completion_length": 249.6000057220459,
|
| 2704 |
+
"epoch": 2.7733333333333334,
|
| 2705 |
+
"grad_norm": 0.7228848338127136,
|
| 2706 |
+
"kl": 0.80611572265625,
|
| 2707 |
+
"learning_rate": 5.186685860201718e-08,
|
| 2708 |
+
"loss": 0.1248,
|
| 2709 |
+
"reward": 1.57750001847744,
|
| 2710 |
+
"reward_std": 0.37631080821156504,
|
| 2711 |
+
"rewards/accuracy_reward": 0.6237500101327896,
|
| 2712 |
+
"rewards/format_reward": 0.9537500008940697,
|
| 2713 |
+
"step": 2080
|
| 2714 |
+
},
|
| 2715 |
+
{
|
| 2716 |
+
"completion_length": 251.9662546157837,
|
| 2717 |
+
"epoch": 2.7866666666666666,
|
| 2718 |
+
"grad_norm": 0.471282422542572,
|
| 2719 |
+
"kl": 1.272216796875,
|
| 2720 |
+
"learning_rate": 4.59747985798662e-08,
|
| 2721 |
+
"loss": 0.1567,
|
| 2722 |
+
"reward": 1.493750023841858,
|
| 2723 |
+
"reward_std": 0.44336883127689364,
|
| 2724 |
+
"rewards/accuracy_reward": 0.5787500059232116,
|
| 2725 |
+
"rewards/format_reward": 0.9150000050663948,
|
| 2726 |
+
"step": 2090
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"completion_length": 268.16250438690184,
|
| 2730 |
+
"epoch": 2.8,
|
| 2731 |
+
"grad_norm": 0.7542273998260498,
|
| 2732 |
+
"kl": 1.019189453125,
|
| 2733 |
+
"learning_rate": 4.0432694130264294e-08,
|
| 2734 |
+
"loss": 0.1766,
|
| 2735 |
+
"reward": 1.512500025331974,
|
| 2736 |
+
"reward_std": 0.3997300285845995,
|
| 2737 |
+
"rewards/accuracy_reward": 0.5850000084377825,
|
| 2738 |
+
"rewards/format_reward": 0.9275000020861626,
|
| 2739 |
+
"step": 2100
|
| 2740 |
+
},
|
| 2741 |
+
{
|
| 2742 |
+
"completion_length": 258.7000057220459,
|
| 2743 |
+
"epoch": 2.8133333333333335,
|
| 2744 |
+
"grad_norm": 0.652788519859314,
|
| 2745 |
+
"kl": 1.01083984375,
|
| 2746 |
+
"learning_rate": 3.524187912991056e-08,
|
| 2747 |
+
"loss": 0.0999,
|
| 2748 |
+
"reward": 1.5262500286102294,
|
| 2749 |
+
"reward_std": 0.3544511809945107,
|
| 2750 |
+
"rewards/accuracy_reward": 0.5775000077672303,
|
| 2751 |
+
"rewards/format_reward": 0.9487500041723251,
|
| 2752 |
+
"step": 2110
|
| 2753 |
+
},
|
| 2754 |
+
{
|
| 2755 |
+
"completion_length": 257.93125343322754,
|
| 2756 |
+
"epoch": 2.8266666666666667,
|
| 2757 |
+
"grad_norm": 0.9080987572669983,
|
| 2758 |
+
"kl": 1.49254150390625,
|
| 2759 |
+
"learning_rate": 3.040360290696909e-08,
|
| 2760 |
+
"loss": 0.2127,
|
| 2761 |
+
"reward": 1.4812500149011611,
|
| 2762 |
+
"reward_std": 0.42118182219564915,
|
| 2763 |
+
"rewards/accuracy_reward": 0.5700000080280005,
|
| 2764 |
+
"rewards/format_reward": 0.9112500056624413,
|
| 2765 |
+
"step": 2120
|
| 2766 |
+
},
|
| 2767 |
+
{
|
| 2768 |
+
"completion_length": 234.36625385284424,
|
| 2769 |
+
"epoch": 2.84,
|
| 2770 |
+
"grad_norm": 0.9428286552429199,
|
| 2771 |
+
"kl": 0.8838134765625,
|
| 2772 |
+
"learning_rate": 2.5919029940380145e-08,
|
| 2773 |
+
"loss": 0.1446,
|
| 2774 |
+
"reward": 1.5850000232458115,
|
| 2775 |
+
"reward_std": 0.3889846485108137,
|
| 2776 |
+
"rewards/accuracy_reward": 0.652500010933727,
|
| 2777 |
+
"rewards/format_reward": 0.9325000062584877,
|
| 2778 |
+
"step": 2130
|
| 2779 |
+
},
|
| 2780 |
+
{
|
| 2781 |
+
"completion_length": 253.12500400543212,
|
| 2782 |
+
"epoch": 2.8533333333333335,
|
| 2783 |
+
"grad_norm": 1.143280029296875,
|
| 2784 |
+
"kl": 0.8545166015625,
|
| 2785 |
+
"learning_rate": 2.178923957959289e-08,
|
| 2786 |
+
"loss": 0.1153,
|
| 2787 |
+
"reward": 1.526250024139881,
|
| 2788 |
+
"reward_std": 0.39961728677153585,
|
| 2789 |
+
"rewards/accuracy_reward": 0.5787500070407987,
|
| 2790 |
+
"rewards/format_reward": 0.947500005364418,
|
| 2791 |
+
"step": 2140
|
| 2792 |
+
},
|
| 2793 |
+
{
|
| 2794 |
+
"completion_length": 244.91625385284425,
|
| 2795 |
+
"epoch": 2.8666666666666667,
|
| 2796 |
+
"grad_norm": 0.6661178469657898,
|
| 2797 |
+
"kl": 0.988916015625,
|
| 2798 |
+
"learning_rate": 1.8015225784786483e-08,
|
| 2799 |
+
"loss": 0.1399,
|
| 2800 |
+
"reward": 1.551250022649765,
|
| 2801 |
+
"reward_std": 0.3881247241050005,
|
| 2802 |
+
"rewards/accuracy_reward": 0.6075000107288361,
|
| 2803 |
+
"rewards/format_reward": 0.9437500059604644,
|
| 2804 |
+
"step": 2150
|
| 2805 |
+
},
|
| 2806 |
+
{
|
| 2807 |
+
"completion_length": 232.5712547302246,
|
| 2808 |
+
"epoch": 2.88,
|
| 2809 |
+
"grad_norm": 0.9537074565887451,
|
| 2810 |
+
"kl": 0.7067138671875,
|
| 2811 |
+
"learning_rate": 1.4597896887644457e-08,
|
| 2812 |
+
"loss": 0.1309,
|
| 2813 |
+
"reward": 1.641250017285347,
|
| 2814 |
+
"reward_std": 0.3669580578804016,
|
| 2815 |
+
"rewards/accuracy_reward": 0.6787500075995923,
|
| 2816 |
+
"rewards/format_reward": 0.9625000029802322,
|
| 2817 |
+
"step": 2160
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"completion_length": 228.0150047302246,
|
| 2821 |
+
"epoch": 2.8933333333333335,
|
| 2822 |
+
"grad_norm": 1.5120928287506104,
|
| 2823 |
+
"kl": 0.9121337890625,
|
| 2824 |
+
"learning_rate": 1.1538075372735435e-08,
|
| 2825 |
+
"loss": 0.1243,
|
| 2826 |
+
"reward": 1.5912500202655793,
|
| 2827 |
+
"reward_std": 0.36697540059685707,
|
| 2828 |
+
"rewards/accuracy_reward": 0.6437500088475645,
|
| 2829 |
+
"rewards/format_reward": 0.9475000023841857,
|
| 2830 |
+
"step": 2170
|
| 2831 |
+
},
|
| 2832 |
+
{
|
| 2833 |
+
"completion_length": 248.69500427246095,
|
| 2834 |
+
"epoch": 2.9066666666666667,
|
| 2835 |
+
"grad_norm": 13.778345108032227,
|
| 2836 |
+
"kl": 1.008544921875,
|
| 2837 |
+
"learning_rate": 8.836497679557964e-09,
|
| 2838 |
+
"loss": 0.1507,
|
| 2839 |
+
"reward": 1.547500017285347,
|
| 2840 |
+
"reward_std": 0.39245944768190383,
|
| 2841 |
+
"rewards/accuracy_reward": 0.600000009033829,
|
| 2842 |
+
"rewards/format_reward": 0.9475000008940697,
|
| 2843 |
+
"step": 2180
|
| 2844 |
+
},
|
| 2845 |
+
{
|
| 2846 |
+
"completion_length": 239.8487533569336,
|
| 2847 |
+
"epoch": 2.92,
|
| 2848 |
+
"grad_norm": 0.7719865441322327,
|
| 2849 |
+
"kl": 0.8395263671875,
|
| 2850 |
+
"learning_rate": 6.493814025293476e-09,
|
| 2851 |
+
"loss": 0.1101,
|
| 2852 |
+
"reward": 1.5650000244379043,
|
| 2853 |
+
"reward_std": 0.36453715413808824,
|
| 2854 |
+
"rewards/accuracy_reward": 0.616250010766089,
|
| 2855 |
+
"rewards/format_reward": 0.948750002682209,
|
| 2856 |
+
"step": 2190
|
| 2857 |
+
},
|
| 2858 |
+
{
|
| 2859 |
+
"completion_length": 241.00000209808348,
|
| 2860 |
+
"epoch": 2.9333333333333336,
|
| 2861 |
+
"grad_norm": 0.8857264518737793,
|
| 2862 |
+
"kl": 1.47626953125,
|
| 2863 |
+
"learning_rate": 4.510588248311964e-09,
|
| 2864 |
+
"loss": 0.1851,
|
| 2865 |
+
"reward": 1.4975000217556953,
|
| 2866 |
+
"reward_std": 0.3946533836424351,
|
| 2867 |
+
"rewards/accuracy_reward": 0.5750000107102096,
|
| 2868 |
+
"rewards/format_reward": 0.9225000023841858,
|
| 2869 |
+
"step": 2200
|
| 2870 |
+
},
|
| 2871 |
+
{
|
| 2872 |
+
"completion_length": 259.2575029373169,
|
| 2873 |
+
"epoch": 2.9466666666666668,
|
| 2874 |
+
"grad_norm": 1.154828667640686,
|
| 2875 |
+
"kl": 0.94993896484375,
|
| 2876 |
+
"learning_rate": 2.8872976724670375e-09,
|
| 2877 |
+
"loss": 0.1104,
|
| 2878 |
+
"reward": 1.6000000178813933,
|
| 2879 |
+
"reward_std": 0.37620634213089943,
|
| 2880 |
+
"rewards/accuracy_reward": 0.6500000108033419,
|
| 2881 |
+
"rewards/format_reward": 0.9500000044703484,
|
| 2882 |
+
"step": 2210
|
| 2883 |
+
},
|
| 2884 |
+
{
|
| 2885 |
+
"completion_length": 269.49375610351564,
|
| 2886 |
+
"epoch": 2.96,
|
| 2887 |
+
"grad_norm": 0.6843157410621643,
|
| 2888 |
+
"kl": 1.0091552734375,
|
| 2889 |
+
"learning_rate": 1.624332992213151e-09,
|
| 2890 |
+
"loss": 0.1773,
|
| 2891 |
+
"reward": 1.4937500327825546,
|
| 2892 |
+
"reward_std": 0.4581430654972792,
|
| 2893 |
+
"rewards/accuracy_reward": 0.5700000094249844,
|
| 2894 |
+
"rewards/format_reward": 0.9237500056624413,
|
| 2895 |
+
"step": 2220
|
| 2896 |
+
},
|
| 2897 |
+
{
|
| 2898 |
+
"completion_length": 259.83625545501707,
|
| 2899 |
+
"epoch": 2.9733333333333336,
|
| 2900 |
+
"grad_norm": 0.854248583316803,
|
| 2901 |
+
"kl": 0.9797119140625,
|
| 2902 |
+
"learning_rate": 7.219981785733243e-10,
|
| 2903 |
+
"loss": 0.1681,
|
| 2904 |
+
"reward": 1.557500024139881,
|
| 2905 |
+
"reward_std": 0.4305118963122368,
|
| 2906 |
+
"rewards/accuracy_reward": 0.6300000097602606,
|
| 2907 |
+
"rewards/format_reward": 0.927500008046627,
|
| 2908 |
+
"step": 2230
|
| 2909 |
+
},
|
| 2910 |
+
{
|
| 2911 |
+
"completion_length": 244.36375274658204,
|
| 2912 |
+
"epoch": 2.986666666666667,
|
| 2913 |
+
"grad_norm": 0.7409846186637878,
|
| 2914 |
+
"kl": 1.03876953125,
|
| 2915 |
+
"learning_rate": 1.8051040597882872e-10,
|
| 2916 |
+
"loss": 0.1227,
|
| 2917 |
+
"reward": 1.4725000217556954,
|
| 2918 |
+
"reward_std": 0.3398312862962484,
|
| 2919 |
+
"rewards/accuracy_reward": 0.5237500051036477,
|
| 2920 |
+
"rewards/format_reward": 0.9487500056624413,
|
| 2921 |
+
"step": 2240
|
| 2922 |
+
},
|
| 2923 |
+
{
|
| 2924 |
+
"completion_length": 253.62000465393066,
|
| 2925 |
+
"epoch": 3.0,
|
| 2926 |
+
"grad_norm": 1.5809358358383179,
|
| 2927 |
+
"kl": 1.09482421875,
|
| 2928 |
+
"learning_rate": 0.0,
|
| 2929 |
+
"loss": 0.1685,
|
| 2930 |
+
"reward": 1.4925000250339509,
|
| 2931 |
+
"reward_std": 0.3981329433619976,
|
| 2932 |
+
"rewards/accuracy_reward": 0.5537500067614018,
|
| 2933 |
+
"rewards/format_reward": 0.9387500017881394,
|
| 2934 |
+
"step": 2250
|
| 2935 |
+
},
|
| 2936 |
+
{
|
| 2937 |
+
"epoch": 3.0,
|
| 2938 |
+
"step": 2250,
|
| 2939 |
+
"total_flos": 0.0,
|
| 2940 |
+
"train_loss": 0.283822166296343,
|
| 2941 |
+
"train_runtime": 92192.5552,
|
| 2942 |
+
"train_samples_per_second": 0.195,
|
| 2943 |
+
"train_steps_per_second": 0.024
|
| 2944 |
+
}
|
| 2945 |
+
],
|
| 2946 |
+
"logging_steps": 10,
|
| 2947 |
+
"max_steps": 2250,
|
| 2948 |
+
"num_input_tokens_seen": 0,
|
| 2949 |
+
"num_train_epochs": 3,
|
| 2950 |
+
"save_steps": 500,
|
| 2951 |
+
"stateful_callbacks": {
|
| 2952 |
+
"TrainerControl": {
|
| 2953 |
+
"args": {
|
| 2954 |
+
"should_epoch_stop": false,
|
| 2955 |
+
"should_evaluate": false,
|
| 2956 |
+
"should_log": false,
|
| 2957 |
+
"should_save": true,
|
| 2958 |
+
"should_training_stop": true
|
| 2959 |
+
},
|
| 2960 |
+
"attributes": {}
|
| 2961 |
+
}
|
| 2962 |
+
},
|
| 2963 |
+
"total_flos": 0.0,
|
| 2964 |
+
"train_batch_size": 4,
|
| 2965 |
+
"trial_name": null,
|
| 2966 |
+
"trial_params": null
|
| 2967 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd89efa8d265dde04bcb161c6b8d01109b4a6c858df429f14aab173c9d805713
|
| 3 |
+
size 7608
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|