import torch import torch.nn as nn class Config: vocab_size = 50257 embedding_dim = 512 num_layers = 10 num_heads = 8 ff_dim = 2048 max_seq_len = 256 device = "cuda" if torch.cuda.is_available() else "cpu" class JarvisXCore(nn.Module): def __init__(self, embed_dim, heads, ff_dim): super().__init__() self.attn = nn.MultiheadAttention(embed_dim, heads, batch_first=True) self.ln1 = nn.LayerNorm(embed_dim) self.ff = nn.Sequential( nn.Linear(embed_dim, ff_dim), nn.GELU(), nn.Linear(ff_dim, embed_dim) ) self.ln2 = nn.LayerNorm(embed_dim) def forward(self, x): attn_output, _ = self.attn(x, x, x) x = self.ln1(x + attn_output) ff_output = self.ff(x) return self.ln2(x + ff_output) class JarvisX50M(nn.Module): def __init__(self, config): super().__init__() self.token_embed = nn.Embedding(config.vocab_size, config.embedding_dim) self.pos_embed = nn.Parameter(torch.zeros(1, config.max_seq_len, config.embedding_dim)) self.blocks = nn.Sequential(*[ JarvisXCore(config.embedding_dim, config.num_heads, config.ff_dim) for _ in range(config.num_layers) ]) self.ln_f = nn.LayerNorm(config.embedding_dim) self.head = nn.Linear(config.embedding_dim, config.vocab_size) def forward(self, x): x = self.token_embed(x) + self.pos_embed[:, :x.size(1), :] x = self.blocks(x) return self.head(self.ln_f(x))