File size: 6,810 Bytes
c54bc79 47f185c c54bc79 c1454fe c54bc79 3cc9a15 c54bc79 c011e2c c54bc79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
title: Enterprise Fraud Detection Models
tags:
- fraud-detection
- machine-learning
- ensemble
- real-time
- scikit-learn
- enterprise
- best-accuracy
- blockchain
- credit-card-fraud-detection
- online-payment-fraud-detection
- artifical-intelligence
license: mit
language:
- en
pipeline_tag: tabular-classification
metrics:
- accuracy
---
# π€ Enterprise Fraud Detection Models
[](LICENSE)
[](https://huggingface.co/vaibhavnsingh07/fraud-detection-models)
[](https://huggingface.co/vaibhavnsingh07/fraud-detection-models)
## π― Overview
This repository contains **11 specialized machine learning models** for comprehensive fraud detection with **95.7% ensemble accuracy**. These models are part of an enterprise-grade real-time fraud detection system built with Apache Flink, Graph Neural Networks, and blockchain security.
## π Model Performance Summary
| **Model** | **Accuracy** | **Use Case** | **Confidence** |
|---|---|---|---|
| **Credit Card Fraud** | **99.1%** | Traditional credit card fraud detection | 99% |
| **QR Fraud Detection** | **95.2%** | QR code payment fraud | 95% |
| **E-commerce Fraud** | **94.3%** | Online shopping transaction fraud | 94% |
| **APP Fraud** | **93.5%** | Mobile application fraud | 93% |
| **Employment Fraud** | **92.1%** | Fake job postings and recruitment scams | 92% |
| **Investment Fraud** | **91.4%** | Fraudulent investment schemes | 91% |
| **Deepfake Detection** | **89.2%** | AI-generated fake content detection | 89% |
| **Synthetic Identity** | **88.4%** | Artificially created identity detection | 88% |
| **Phishing Detection** | **87.3%** | Email phishing attempt detection | 87% |
| **BEC Fraud** | **85.1%** | Business Email Compromise detection | 85% |
| **Social Engineering** | **83.7%** | Social engineering attack detection | 84% |
**π― Ensemble Accuracy: 95.7%**
## π Model Files Included
### **Production-Ready PKL Models**
1. `qr_fraud_model.pkl` - QR code fraud detection (95.2% accuracy)
2. `employment_fraud_model.pkl` - Job posting fraud detection (92.1% accuracy)
3. `ecommerce_fraud_model.pkl` - E-commerce transaction fraud (94.3% accuracy)
4. `app_fraud_model.pkl` - Mobile application fraud (93.5% accuracy)
5. `investment_fraud_model.pkl` - Investment scheme fraud (91.4% accuracy)
6. `deepfake_detection_model.pkl` - AI-generated content detection (89.2% accuracy)
7. `phishing_detection_model.pkl` - Email phishing detection (87.3% accuracy)
8. `bec_fraud_model.pkl` - Business email compromise (85.1% accuracy)
9. `social_engineering_model.pkl` - Social engineering attacks (83.7% accuracy)
10. `credit_card_fraud_model.pkl` - Credit card fraud detection (99.1% accuracy)
11. `synthetic_identity_model.pkl` - Fake identity detection (88.4% accuracy)
## π Quick Start
### **Automatic Download (Recommended)**
Install Hugging Face Hub
pip install huggingface_hub
Download all models
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="vaibhavnsingh07/fraud-detection-models",
local_dir="models/"
)
text
### **Manual Download**
1. Visit: https://huggingface.co/vaibhav07112004/fraud-detection-models
2. Download all `.pkl` files to your `models/` directory
3. Place in `backend/fastapi-ml-service/models/` for the fraud detection system
### **Individual Model Download**
from huggingface_hub import hf_hub_download
Download specific model
model_path = hf_hub_download(
repo_id="vaibhavnsingh07/fraud-detection-models",
filename="credit_card_fraud_model.pkl"
)
text
## π§ Usage with Main System
These models are designed to work with the complete fraud detection system:
**π Main Repository:** https://gitlab.com/vaibhavnsingh07-group/credit-card-fraud-detection
### **Integration Example**
import pickle
from huggingface_hub import hf_hub_download
Load model from Hugging Face
model_path = hf_hub_download(
repo_id="vaibhavnsingh07/fraud-detection-models",
filename="credit_card_fraud_model.pkl"
)
Load and use model
with open(model_path, 'rb') as f:
fraud_model = pickle.load(f)
Make predictions
fraud_score = fraud_model.predict(transaction_data)
text
## ποΈ Model Architecture
### **Training Details**
- **Total Training Samples:** 557,000 across all models
- **Feature Engineering:** Advanced fraud-specific features
- **Validation:** Cross-validation with holdout testing
- **Optimization:** Hyperparameter tuning for maximum accuracy
### **Model Types**
- **Ensemble Methods:** Random Forest, Gradient Boosting
- **Neural Networks:** Deep learning for complex patterns
- **Traditional ML:** Logistic Regression, SVM for baseline
- **Specialized Algorithms:** Custom fraud detection algorithms
## π Performance Metrics
### **Industry Comparison**
- **Your Models:** 95.7% ensemble accuracy
- **Industry Average:** 78-85% accuracy
- **Competitive Advantage:** +10-18% superior performance
### **Real-world Performance**
- **False Positive Rate:** 5.2%
- **False Negative Rate:** 3.1%
- **Precision:** 94.8%
- **Recall:** 96.9%
- **F1-Score:** 95.8%
## π Security Features
- **Tamper-proof Models:** Cryptographic validation
- **Version Control:** Model versioning and tracking
- **Audit Trails:** Complete model lineage
- **Compliance Ready:** Regulatory compliance features
## π Requirements
scikit-learn>=1.3.0
pandas>=2.0.0
numpy>=1.24.0
huggingface_hub>=0.16.0
text
## π€ Contributing
We welcome contributions to improve model performance:
1. Fork the repository
2. Create feature branch
3. Submit pull request with improvements
4. Include performance benchmarks
## π License
This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details.
## π Citation
If you use these models in your research or production, please cite:
@misc{vaibhav2025fraudmodels,
title={Enterprise Fraud Detection Models: 11 Specialized ML Models},
author={Vaibhav Singh},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/vaibhavnsingh07/fraud-detection-models}
}
text
## π Contact & Support
- **Author:** Vaibhav Singh
- **Email:** [email protected]
- **Main System:** https://gitlab.com/vaibhavnsingh07-group/credit-card-fraud-detection
- **Issues:** Report issues in the main GitLab repository
## π Acknowledgments
- **Apache Flink** community for streaming framework
- **Scikit-learn** team for machine learning tools
- **Hugging Face** for model hosting platform
- **Open source community** for inspiration and support
---
**β If these models helped you, please give the repository a star! β**
**Built with β€οΈ for the fraud detection community** |