simple-gclm-implementation / gclm_train_example.py
umm-dev's picture
Create gclm_train_example.py
0cad2e8 verified
print("Starting...")
###############################################
# CONFIGURATION — CUSTOMIZE EVERYTHING HERE
###############################################
# ---- data / vocab ----
TXT_PATH = "data.txt"
TOKENIZER_NAME = "gpt2"
REDUCE_VOCAB = True
VOCAB_SAVE_PATH = "vocab_map.pt"
# ---- training ----
EPOCHS = 25
MICRO_BATCH_SIZE = 1
GRAD_ACCUM_STEPS = 8
LEARNING_RATE = 3e-4
# ---- model ----
D_MODEL = 256
N_LAYERS = 4
MAX_SEQ_LEN = 8192
LOCAL_KERNEL_SIZE = 5
GLOBAL_KERNEL_SIZE = 256
USE_GLOBAL_EVERY_N_LAYERS = 2
# ---- FFT conv ----
FFT_SIZE = 1024 # must be power of 2 and > GLOBAL_KERNEL_SIZE
# ---- checkpointing ----
SAVE_PATH = "model.pt"
SAVE_N_EPOCHS = 1
# ---- device ----
USE_DEVICE = "cuda"
USE_AMP = True
USE_ACTIVATION_CHECKPOINTING = False
# ---- torch.compile ----
COMPILE = False
COMPILE_MODE = "reduce-overhead"
COMPILE_BACKEND = "eager"
###############################################
# END CONFIG
###############################################
import os
# Windows cannot use expandable_segments — only enable on Linux.
if os.name != "nt":
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "expandable_segments:True")
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import tiktoken
# performance settings
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
###############################################################
# SPECIAL TOKENS
###############################################################
PAD_ID = 0
SEP_ID = 1
EOS_ID = 2
OFFSET = 3
###############################################################
# VOCAB
###############################################################
def build_dataset_vocab(txt_path, tokenizer, save_path):
text = open(txt_path, "r", encoding="utf-8").read()
token_ids = tokenizer.encode(text)
used = sorted(set(token_ids))
id2new = {tok: i + OFFSET for i, tok in enumerate(used)}
torch.save({
"used_tokens": used,
"id2new": id2new,
"PAD_ID": PAD_ID,
"SEP_ID": SEP_ID,
"EOS_ID": EOS_ID,
}, save_path)
print(f"[OK] Vocab size: {len(used) + OFFSET}")
return used, id2new
###############################################################
# DATASET
###############################################################
class RemappedTextDataset(Dataset):
def __init__(self, path, tokenizer, id2new, max_len):
text = open(path, "r", encoding="utf-8").read()
raw = tokenizer.encode(text)
self.ids = [id2new.get(i, PAD_ID) for i in raw] + [EOS_ID]
self.max_len = max_len
def __len__(self):
return len(self.ids) - self.max_len - 1
def __getitem__(self, i):
x = self.ids[i:i+self.max_len]
y = self.ids[i+1:i+self.max_len+1]
return torch.tensor(x), torch.tensor(y)
###############################################################
# GLOBAL + LOCAL CONVOLUTION
###############################################################
class GlobalConv1D(nn.Module):
def __init__(self, d_model, kernel_size, fft_size):
super().__init__()
self.kernel = nn.Parameter(torch.randn(d_model, kernel_size) * 0.01)
self.kernel_size = kernel_size
self.fft_size = fft_size
def forward(self, x):
B, C, T = x.shape
K = min(self.kernel_size, T)
overlap = K - 1
block = self.fft_size - overlap
x = F.pad(x, (overlap, 0))
k = self.kernel[:, :K]
k = F.pad(k, (0, self.fft_size - K))
k_f = torch.fft.rfft(k, n=self.fft_size)
outs = []
pos = 0
while pos < T:
seg = x[..., pos:pos+self.fft_size]
if seg.shape[-1] < self.fft_size:
seg = F.pad(seg, (0, self.fft_size - seg.shape[-1]))
y = torch.fft.irfft(
torch.fft.rfft(seg, n=self.fft_size) * k_f.unsqueeze(0),
n=self.fft_size
)
outs.append(y[..., overlap:overlap+block])
pos += block
return torch.cat(outs, dim=-1)[..., :T]
class LocalConv1D(nn.Module):
def __init__(self, d_model, k):
super().__init__()
self.k = k
self.dw = nn.Conv1d(d_model, d_model, k, groups=d_model)
self.pw = nn.Conv1d(d_model, d_model, 1)
def forward(self, x):
x = F.pad(x, (self.k - 1, 0))
return self.pw(F.relu(self.dw(x)))
class Block(nn.Module):
def __init__(self, d_model, use_global):
super().__init__()
self.use_global = use_global
self.ln1 = nn.LayerNorm(d_model)
self.local = LocalConv1D(d_model, LOCAL_KERNEL_SIZE)
if use_global:
self.ln2 = nn.LayerNorm(d_model)
self.global_conv = GlobalConv1D(d_model, GLOBAL_KERNEL_SIZE, FFT_SIZE)
self.ln3 = nn.LayerNorm(d_model)
self.ff = nn.Sequential(
nn.Linear(d_model, d_model*4),
nn.GELU(),
nn.Linear(d_model*4, d_model)
)
def forward(self, x):
x = x + self.local(self.ln1(x).transpose(1,2)).transpose(1,2)
if self.use_global:
x = x + self.global_conv(self.ln2(x).transpose(1,2)).transpose(1,2)
return x + self.ff(self.ln3(x))
class GCLM(nn.Module):
def __init__(self, vocab):
super().__init__()
self.emb = nn.Embedding(vocab, D_MODEL)
self.pos = nn.Embedding(MAX_SEQ_LEN, D_MODEL)
self.layers = nn.ModuleList([
Block(D_MODEL, i % USE_GLOBAL_EVERY_N_LAYERS == 0)
for i in range(N_LAYERS)
])
self.ln = nn.LayerNorm(D_MODEL)
self.head = nn.Linear(D_MODEL, vocab)
def forward(self, x):
T = x.size(1)
h = self.emb(x) + self.pos(torch.arange(T, device=x.device))
for layer in self.layers:
h = layer(h)
return self.head(self.ln(h))
###############################################################
# TRAINING LOOP
###############################################################
def train():
device = USE_DEVICE if torch.cuda.is_available() else "cpu"
print("[INFO] Device:", device)
tok = tiktoken.get_encoding(TOKENIZER_NAME)
used, id2new = build_dataset_vocab(TXT_PATH, tok, VOCAB_SAVE_PATH)
vocab = len(used) + OFFSET
ds = RemappedTextDataset(TXT_PATH, tok, id2new, MAX_SEQ_LEN)
dl = DataLoader(ds, batch_size=MICRO_BATCH_SIZE, shuffle=True)
model = GCLM(vocab).to(device)
# 🔁 RESUME IF CHECKPOINT EXISTS
if os.path.exists(SAVE_PATH):
model.load_state_dict(torch.load(SAVE_PATH, map_location=device))
print(f"[RESUME] Loaded existing checkpoint from {SAVE_PATH}")
if device == "cuda" and COMPILE:
print("[INFO] Compiling model with torch.compile...")
model = torch.compile(
model,
mode=COMPILE_MODE,
fullgraph=False,
backend=COMPILE_BACKEND
)
opt = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_ID)
scaler = torch.amp.GradScaler("cuda", enabled=(device=="cuda" and USE_AMP))
for ep in range(EPOCHS):
print(f"\nEpoch {ep+1}/{EPOCHS}")
opt.zero_grad(set_to_none=True)
for i, (x, y) in enumerate(tqdm(dl)):
x, y = x.to(device), y.to(device)
with torch.amp.autocast("cuda", enabled=(device=="cuda" and USE_AMP)):
logits = model(x)
loss = loss_fn(logits.reshape(-1, vocab), y.reshape(-1))
loss = loss / GRAD_ACCUM_STEPS
scaler.scale(loss).backward()
if (i+1) % GRAD_ACCUM_STEPS == 0:
scaler.step(opt)
scaler.update()
opt.zero_grad(set_to_none=True)
if SAVE_N_EPOCHS and (ep+1) % SAVE_N_EPOCHS == 0:
torch.save(model.state_dict(), SAVE_PATH)
print("[OK] Saved checkpoint.")
torch.save(model.state_dict(), SAVE_PATH)
print("[DONE] Training complete.")
###############################################################
# ENTRY POINT
###############################################################
if __name__ == "__main__":
train()