--- language: ml library_name: mlx license: apache-2.0 pipeline_tag: automatic-speech-recognition tags: - whisper - mlx - Automatic Speech Recognition base_model: vrclc/Whisper-medium-Malayalam --- ## Whisper-medium-Malayalam (MLX) Apple MLX-converted weights for `vrclc/Whisper-medium-Malayalam` optimized for Apple Silicon. - Base model: `vrclc/Whisper-medium-Malayalam` - Format: MLX (`weights.safetensors`, `config.json`) - Intended runtime: `mlx-whisper` on Apple Silicon (M-series) ### Usage (Python) ```python import mlx_whisper result = mlx_whisper.transcribe( "/path/to/audio.wav", path_or_hf_repo="", # Optional decoding controls language="ml", # Malayalam task="transcribe", # or "translate" temperature=0.0, no_speech_threshold=0.3, logprob_threshold=-1.0, compression_ratio_threshold=2.4, ) print(result["text"]) ``` ### Local HTTP server (FastAPI) With the server at `whisper/server_mlx.py` from `avatar-npm`: ```bash export WHISPER_MODEL= export WHISPER_LANGUAGE=ml python server_mlx.py # POST /transcribe with form field `file` ``` ### Notes - This repo contains only the MLX weights and config. Tokenization and audio preprocessing are handled by `mlx-whisper`. - If you need the original (non-MLX) model, see `vrclc/Whisper-medium-Malayalam`. ### License The original model’s license applies. See the upstream repository for details.