Upload train_unigram.py
Browse files- train_unigram.py +119 -0
train_unigram.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Usage:
|
| 3 |
+
python train_unigram.py --export_to_hub
|
| 4 |
+
|
| 5 |
+
Note that you'd need to execute `huggingface-cli login` before if you passed export_to_hub.
|
| 6 |
+
|
| 7 |
+
Reference:
|
| 8 |
+
https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/tokenizer_training.ipynb
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import argparse
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
import datasets
|
| 15 |
+
import torch
|
| 16 |
+
from datasets import Dataset
|
| 17 |
+
from tokenizers import (
|
| 18 |
+
Tokenizer,
|
| 19 |
+
decoders,
|
| 20 |
+
normalizers,
|
| 21 |
+
pre_tokenizers,
|
| 22 |
+
processors,
|
| 23 |
+
)
|
| 24 |
+
from tokenizers.models import Unigram
|
| 25 |
+
from tokenizers.trainers import UnigramTrainer
|
| 26 |
+
from transformers import AlbertTokenizerFast
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def parse_args():
|
| 30 |
+
parser = argparse.ArgumentParser(
|
| 31 |
+
description="Train a unigram tokenizer on the wikitext dataset."
|
| 32 |
+
)
|
| 33 |
+
parser.add_argument(
|
| 34 |
+
"-bs",
|
| 35 |
+
"--batch-size",
|
| 36 |
+
type=int,
|
| 37 |
+
default=1000,
|
| 38 |
+
help="Batch size during training.",
|
| 39 |
+
)
|
| 40 |
+
parser.add_argument(
|
| 41 |
+
"-vs",
|
| 42 |
+
"--vocab-size",
|
| 43 |
+
type=int,
|
| 44 |
+
default=10000,
|
| 45 |
+
help="Size of the desired vocabulary.",
|
| 46 |
+
)
|
| 47 |
+
parser.add_argument(
|
| 48 |
+
"--limit",
|
| 49 |
+
default=None,
|
| 50 |
+
type=int,
|
| 51 |
+
help="Limit the number of shards (used for debugging).",
|
| 52 |
+
)
|
| 53 |
+
parser.add_argument(
|
| 54 |
+
"--export_to_hub",
|
| 55 |
+
action="store_true",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
args = parser.parse_args()
|
| 59 |
+
return args
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_unigram_tokenizer() -> Tokenizer:
|
| 63 |
+
tokenizer = Tokenizer(Unigram())
|
| 64 |
+
tokenizer.normalizer = normalizers.Sequence(
|
| 65 |
+
[normalizers.Replace("``", '"'), normalizers.Replace("''", '"')]
|
| 66 |
+
)
|
| 67 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace()
|
| 68 |
+
return tokenizer
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_unigram_trainer(vocab_size: int) -> UnigramTrainer:
|
| 72 |
+
trainer = UnigramTrainer(
|
| 73 |
+
unk_token="<unk>",
|
| 74 |
+
special_tokens=["[CLS]", "[SEP]", "<unk>", "<pad>", "[MASK]"],
|
| 75 |
+
vocab_size=vocab_size,
|
| 76 |
+
)
|
| 77 |
+
return trainer
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def main(args):
|
| 81 |
+
wikitext = datasets.load_dataset(
|
| 82 |
+
"wikitext", "wikitext-103-raw-v1", split="train"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
if args.limit is not None:
|
| 86 |
+
wikitext = wikitext[: args.limit]
|
| 87 |
+
wikitext = Dataset.from_dict(wikitext)
|
| 88 |
+
logging.info(f"Limiting the dataset to {args.limit} entries.")
|
| 89 |
+
|
| 90 |
+
dataloader = torch.utils.data.DataLoader(
|
| 91 |
+
wikitext, num_workers=0, batch_size=args.batch_size
|
| 92 |
+
)
|
| 93 |
+
logging.info("Training the tokenizer.")
|
| 94 |
+
tokenizer = get_unigram_tokenizer()
|
| 95 |
+
trainer = get_unigram_trainer(args.vocab_size)
|
| 96 |
+
tokenizer.train_from_iterator(dataloader, trainer=trainer)
|
| 97 |
+
logging.info("Tokenizer training complete!")
|
| 98 |
+
|
| 99 |
+
cls_token_id = tokenizer.token_to_id("[CLS]")
|
| 100 |
+
sep_token_id = tokenizer.token_to_id("[SEP]")
|
| 101 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
| 102 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
| 103 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
| 104 |
+
special_tokens=[
|
| 105 |
+
("[CLS]", cls_token_id),
|
| 106 |
+
("[SEP]", sep_token_id),
|
| 107 |
+
],
|
| 108 |
+
)
|
| 109 |
+
tokenizer.decoder = decoders.Metaspace()
|
| 110 |
+
|
| 111 |
+
if args.export_to_hub:
|
| 112 |
+
logging.info("Exporting the trained tokenzier to Hub.")
|
| 113 |
+
new_tokenizer = AlbertTokenizerFast(tokenizer_object=tokenizer)
|
| 114 |
+
new_tokenizer.push_to_hub("sayakpaul/unigram-tokenizer-wikitext")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
args = parse_args()
|
| 119 |
+
main(args)
|