Upload model
Browse files- README.md +131 -0
- added_tokens.json +4 -0
- config.json +207 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +76 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: span-marker
|
| 3 |
+
tags:
|
| 4 |
+
- span-marker
|
| 5 |
+
- token-classification
|
| 6 |
+
- ner
|
| 7 |
+
- named-entity-recognition
|
| 8 |
+
- generated_from_span_marker_trainer
|
| 9 |
+
metrics:
|
| 10 |
+
- precision
|
| 11 |
+
- recall
|
| 12 |
+
- f1
|
| 13 |
+
widget: []
|
| 14 |
+
pipeline_tag: token-classification
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# SpanMarker
|
| 18 |
+
|
| 19 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
| 20 |
+
|
| 21 |
+
## Model Details
|
| 22 |
+
|
| 23 |
+
### Model Description
|
| 24 |
+
- **Model Type:** SpanMarker
|
| 25 |
+
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
|
| 26 |
+
- **Maximum Sequence Length:** 256 tokens
|
| 27 |
+
- **Maximum Entity Length:** 8 words
|
| 28 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 29 |
+
<!-- - **Language:** Unknown -->
|
| 30 |
+
<!-- - **License:** Unknown -->
|
| 31 |
+
|
| 32 |
+
### Model Sources
|
| 33 |
+
|
| 34 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
| 35 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
| 36 |
+
|
| 37 |
+
## Uses
|
| 38 |
+
|
| 39 |
+
### Direct Use for Inference
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
from span_marker import SpanMarkerModel
|
| 43 |
+
|
| 44 |
+
# Download from the 🤗 Hub
|
| 45 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
| 46 |
+
# Run inference
|
| 47 |
+
entities = model.predict("None")
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
### Downstream Use
|
| 51 |
+
You can finetune this model on your own dataset.
|
| 52 |
+
|
| 53 |
+
<details><summary>Click to expand</summary>
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from span_marker import SpanMarkerModel, Trainer
|
| 57 |
+
|
| 58 |
+
# Download from the 🤗 Hub
|
| 59 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
| 60 |
+
|
| 61 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
| 62 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
| 63 |
+
|
| 64 |
+
# Initialize a Trainer using the pretrained model & dataset
|
| 65 |
+
trainer = Trainer(
|
| 66 |
+
model=model,
|
| 67 |
+
train_dataset=dataset["train"],
|
| 68 |
+
eval_dataset=dataset["validation"],
|
| 69 |
+
)
|
| 70 |
+
trainer.train()
|
| 71 |
+
trainer.save_model("span_marker_model_id-finetuned")
|
| 72 |
+
```
|
| 73 |
+
</details>
|
| 74 |
+
|
| 75 |
+
<!--
|
| 76 |
+
### Out-of-Scope Use
|
| 77 |
+
|
| 78 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 79 |
+
-->
|
| 80 |
+
|
| 81 |
+
<!--
|
| 82 |
+
## Bias, Risks and Limitations
|
| 83 |
+
|
| 84 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 85 |
+
-->
|
| 86 |
+
|
| 87 |
+
<!--
|
| 88 |
+
### Recommendations
|
| 89 |
+
|
| 90 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 91 |
+
-->
|
| 92 |
+
|
| 93 |
+
## Training Details
|
| 94 |
+
|
| 95 |
+
### Framework Versions
|
| 96 |
+
- Python: 3.11.7
|
| 97 |
+
- SpanMarker: 1.5.0
|
| 98 |
+
- Transformers: 4.36.2
|
| 99 |
+
- PyTorch: 2.2.1
|
| 100 |
+
- Datasets: 2.16.1
|
| 101 |
+
- Tokenizers: 0.15.0
|
| 102 |
+
|
| 103 |
+
## Citation
|
| 104 |
+
|
| 105 |
+
### BibTeX
|
| 106 |
+
```
|
| 107 |
+
@software{Aarsen_SpanMarker,
|
| 108 |
+
author = {Aarsen, Tom},
|
| 109 |
+
license = {Apache-2.0},
|
| 110 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
| 111 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
| 112 |
+
}
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
<!--
|
| 116 |
+
## Glossary
|
| 117 |
+
|
| 118 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 119 |
+
-->
|
| 120 |
+
|
| 121 |
+
<!--
|
| 122 |
+
## Model Card Authors
|
| 123 |
+
|
| 124 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 125 |
+
-->
|
| 126 |
+
|
| 127 |
+
<!--
|
| 128 |
+
## Model Card Contact
|
| 129 |
+
|
| 130 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 131 |
+
-->
|
added_tokens.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<end>": 31103,
|
| 3 |
+
"<start>": 31102
|
| 4 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "models/span-marker-ktzh-stazh/span-marker-ktzh-stazh/",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"SpanMarkerModel"
|
| 5 |
+
],
|
| 6 |
+
"encoder": {
|
| 7 |
+
"_name_or_path": "deepset/gelectra-large",
|
| 8 |
+
"add_cross_attention": false,
|
| 9 |
+
"architectures": [
|
| 10 |
+
"ElectraForPreTraining"
|
| 11 |
+
],
|
| 12 |
+
"attention_probs_dropout_prob": 0.1,
|
| 13 |
+
"bad_words_ids": null,
|
| 14 |
+
"begin_suppress_tokens": null,
|
| 15 |
+
"bos_token_id": null,
|
| 16 |
+
"chunk_size_feed_forward": 0,
|
| 17 |
+
"classifier_dropout": null,
|
| 18 |
+
"cross_attention_hidden_size": null,
|
| 19 |
+
"decoder_start_token_id": null,
|
| 20 |
+
"diversity_penalty": 0.0,
|
| 21 |
+
"do_sample": false,
|
| 22 |
+
"early_stopping": false,
|
| 23 |
+
"embedding_size": 1024,
|
| 24 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 25 |
+
"eos_token_id": null,
|
| 26 |
+
"exponential_decay_length_penalty": null,
|
| 27 |
+
"finetuning_task": null,
|
| 28 |
+
"forced_bos_token_id": null,
|
| 29 |
+
"forced_eos_token_id": null,
|
| 30 |
+
"hidden_act": "gelu",
|
| 31 |
+
"hidden_dropout_prob": 0.1,
|
| 32 |
+
"hidden_size": 1024,
|
| 33 |
+
"id2label": {
|
| 34 |
+
"0": "O",
|
| 35 |
+
"1": "B-LOC",
|
| 36 |
+
"2": "I-LOC",
|
| 37 |
+
"3": "B-LOCderiv",
|
| 38 |
+
"4": "I-LOCderiv",
|
| 39 |
+
"5": "B-LOCpart",
|
| 40 |
+
"6": "I-LOCpart",
|
| 41 |
+
"7": "B-ORG",
|
| 42 |
+
"8": "I-ORG",
|
| 43 |
+
"9": "B-ORGderiv",
|
| 44 |
+
"10": "I-ORGderiv",
|
| 45 |
+
"11": "B-ORGpart",
|
| 46 |
+
"12": "I-ORGpart",
|
| 47 |
+
"13": "B-OTH",
|
| 48 |
+
"14": "I-OTH",
|
| 49 |
+
"15": "B-OTHderiv",
|
| 50 |
+
"16": "I-OTHderiv",
|
| 51 |
+
"17": "B-OTHpart",
|
| 52 |
+
"18": "I-OTHpart",
|
| 53 |
+
"19": "B-PER",
|
| 54 |
+
"20": "I-PER",
|
| 55 |
+
"21": "B-PERderiv",
|
| 56 |
+
"22": "I-PERderiv",
|
| 57 |
+
"23": "B-PERpart",
|
| 58 |
+
"24": "I-PERpart"
|
| 59 |
+
},
|
| 60 |
+
"initializer_range": 0.02,
|
| 61 |
+
"intermediate_size": 4096,
|
| 62 |
+
"is_decoder": false,
|
| 63 |
+
"is_encoder_decoder": false,
|
| 64 |
+
"label2id": {
|
| 65 |
+
"B-LOC": 1,
|
| 66 |
+
"B-LOCderiv": 3,
|
| 67 |
+
"B-LOCpart": 5,
|
| 68 |
+
"B-ORG": 7,
|
| 69 |
+
"B-ORGderiv": 9,
|
| 70 |
+
"B-ORGpart": 11,
|
| 71 |
+
"B-OTH": 13,
|
| 72 |
+
"B-OTHderiv": 15,
|
| 73 |
+
"B-OTHpart": 17,
|
| 74 |
+
"B-PER": 19,
|
| 75 |
+
"B-PERderiv": 21,
|
| 76 |
+
"B-PERpart": 23,
|
| 77 |
+
"I-LOC": 2,
|
| 78 |
+
"I-LOCderiv": 4,
|
| 79 |
+
"I-LOCpart": 6,
|
| 80 |
+
"I-ORG": 8,
|
| 81 |
+
"I-ORGderiv": 10,
|
| 82 |
+
"I-ORGpart": 12,
|
| 83 |
+
"I-OTH": 14,
|
| 84 |
+
"I-OTHderiv": 16,
|
| 85 |
+
"I-OTHpart": 18,
|
| 86 |
+
"I-PER": 20,
|
| 87 |
+
"I-PERderiv": 22,
|
| 88 |
+
"I-PERpart": 24,
|
| 89 |
+
"O": 0
|
| 90 |
+
},
|
| 91 |
+
"layer_norm_eps": 1e-12,
|
| 92 |
+
"length_penalty": 1.0,
|
| 93 |
+
"max_length": 20,
|
| 94 |
+
"max_position_embeddings": 512,
|
| 95 |
+
"min_length": 0,
|
| 96 |
+
"model_type": "electra",
|
| 97 |
+
"no_repeat_ngram_size": 0,
|
| 98 |
+
"num_attention_heads": 16,
|
| 99 |
+
"num_beam_groups": 1,
|
| 100 |
+
"num_beams": 1,
|
| 101 |
+
"num_hidden_layers": 24,
|
| 102 |
+
"num_return_sequences": 1,
|
| 103 |
+
"output_attentions": false,
|
| 104 |
+
"output_hidden_states": false,
|
| 105 |
+
"output_scores": false,
|
| 106 |
+
"pad_token_id": 0,
|
| 107 |
+
"position_embedding_type": "absolute",
|
| 108 |
+
"prefix": null,
|
| 109 |
+
"problem_type": null,
|
| 110 |
+
"pruned_heads": {},
|
| 111 |
+
"remove_invalid_values": false,
|
| 112 |
+
"repetition_penalty": 1.0,
|
| 113 |
+
"return_dict": true,
|
| 114 |
+
"return_dict_in_generate": false,
|
| 115 |
+
"sep_token_id": null,
|
| 116 |
+
"summary_activation": "gelu",
|
| 117 |
+
"summary_last_dropout": 0.1,
|
| 118 |
+
"summary_type": "first",
|
| 119 |
+
"summary_use_proj": true,
|
| 120 |
+
"suppress_tokens": null,
|
| 121 |
+
"task_specific_params": null,
|
| 122 |
+
"temperature": 1.0,
|
| 123 |
+
"tf_legacy_loss": false,
|
| 124 |
+
"tie_encoder_decoder": false,
|
| 125 |
+
"tie_word_embeddings": true,
|
| 126 |
+
"tokenizer_class": null,
|
| 127 |
+
"top_k": 50,
|
| 128 |
+
"top_p": 1.0,
|
| 129 |
+
"torch_dtype": null,
|
| 130 |
+
"torchscript": false,
|
| 131 |
+
"transformers_version": "4.31.0",
|
| 132 |
+
"type_vocab_size": 2,
|
| 133 |
+
"typical_p": 1.0,
|
| 134 |
+
"use_bfloat16": false,
|
| 135 |
+
"use_cache": true,
|
| 136 |
+
"vocab_size": 31104
|
| 137 |
+
},
|
| 138 |
+
"entity_max_length": 8,
|
| 139 |
+
"id2label": {
|
| 140 |
+
"0": "O",
|
| 141 |
+
"1": "LOC",
|
| 142 |
+
"2": "LOCderiv",
|
| 143 |
+
"3": "LOCpart",
|
| 144 |
+
"4": "ORG",
|
| 145 |
+
"5": "ORGderiv",
|
| 146 |
+
"6": "ORGpart",
|
| 147 |
+
"7": "OTH",
|
| 148 |
+
"8": "OTHderiv",
|
| 149 |
+
"9": "OTHpart",
|
| 150 |
+
"10": "PER",
|
| 151 |
+
"11": "PERderiv",
|
| 152 |
+
"12": "PERpart"
|
| 153 |
+
},
|
| 154 |
+
"id2reduced_id": {
|
| 155 |
+
"0": 0,
|
| 156 |
+
"1": 1,
|
| 157 |
+
"2": 1,
|
| 158 |
+
"3": 2,
|
| 159 |
+
"4": 2,
|
| 160 |
+
"5": 3,
|
| 161 |
+
"6": 3,
|
| 162 |
+
"7": 4,
|
| 163 |
+
"8": 4,
|
| 164 |
+
"9": 5,
|
| 165 |
+
"10": 5,
|
| 166 |
+
"11": 6,
|
| 167 |
+
"12": 6,
|
| 168 |
+
"13": 7,
|
| 169 |
+
"14": 7,
|
| 170 |
+
"15": 8,
|
| 171 |
+
"16": 8,
|
| 172 |
+
"17": 9,
|
| 173 |
+
"18": 9,
|
| 174 |
+
"19": 10,
|
| 175 |
+
"20": 10,
|
| 176 |
+
"21": 11,
|
| 177 |
+
"22": 11,
|
| 178 |
+
"23": 12,
|
| 179 |
+
"24": 12
|
| 180 |
+
},
|
| 181 |
+
"label2id": {
|
| 182 |
+
"LOC": 1,
|
| 183 |
+
"LOCderiv": 2,
|
| 184 |
+
"LOCpart": 3,
|
| 185 |
+
"O": 0,
|
| 186 |
+
"ORG": 4,
|
| 187 |
+
"ORGderiv": 5,
|
| 188 |
+
"ORGpart": 6,
|
| 189 |
+
"OTH": 7,
|
| 190 |
+
"OTHderiv": 8,
|
| 191 |
+
"OTHpart": 9,
|
| 192 |
+
"PER": 10,
|
| 193 |
+
"PERderiv": 11,
|
| 194 |
+
"PERpart": 12
|
| 195 |
+
},
|
| 196 |
+
"marker_max_length": 128,
|
| 197 |
+
"max_next_context": null,
|
| 198 |
+
"max_prev_context": null,
|
| 199 |
+
"model_max_length": 256,
|
| 200 |
+
"model_max_length_default": 512,
|
| 201 |
+
"model_type": "span-marker",
|
| 202 |
+
"span_marker_version": "1.2.4",
|
| 203 |
+
"torch_dtype": "float32",
|
| 204 |
+
"trained_with_document_context": false,
|
| 205 |
+
"transformers_version": "4.36.2",
|
| 206 |
+
"vocab_size": 31104
|
| 207 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74f09d5a4bd2384587bf0dbef1daa3310de68b9cba7130571cbf28f84b9c5f74
|
| 3 |
+
size 1338907540
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": true,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "[PAD]",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"101": {
|
| 13 |
+
"content": "[UNK]",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"102": {
|
| 21 |
+
"content": "[CLS]",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"103": {
|
| 29 |
+
"content": "[SEP]",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"104": {
|
| 37 |
+
"content": "[MASK]",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"31102": {
|
| 45 |
+
"content": "<start>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"31103": {
|
| 53 |
+
"content": "<end>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
}
|
| 60 |
+
},
|
| 61 |
+
"clean_up_tokenization_spaces": true,
|
| 62 |
+
"cls_token": "[CLS]",
|
| 63 |
+
"do_basic_tokenize": true,
|
| 64 |
+
"do_lower_case": false,
|
| 65 |
+
"entity_max_length": 8,
|
| 66 |
+
"mask_token": "[MASK]",
|
| 67 |
+
"max_len": 512,
|
| 68 |
+
"model_max_length": 256,
|
| 69 |
+
"never_split": null,
|
| 70 |
+
"pad_token": "[PAD]",
|
| 71 |
+
"sep_token": "[SEP]",
|
| 72 |
+
"strip_accents": false,
|
| 73 |
+
"tokenize_chinese_chars": true,
|
| 74 |
+
"tokenizer_class": "ElectraTokenizer",
|
| 75 |
+
"unk_token": "[UNK]"
|
| 76 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|