Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 1. Install and Import Baseline Dependencies
|
| 2 |
+
from transformers import PegasusTokenizer, PegasusForConditionalGeneration
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
import requests
|
| 5 |
+
import re
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import csv
|
| 8 |
+
import streamlit as st
|
| 9 |
+
|
| 10 |
+
st.title('Stocks Analysis Machine')
|
| 11 |
+
|
| 12 |
+
x = st.slider('Select a value')
|
| 13 |
+
st.write(x, 'squared is', x * x)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# 2. Setup Model
|
| 17 |
+
model_name = "human-centered-summarization/financial-summarization-pegasus"
|
| 18 |
+
tokenizer = PegasusTokenizer.from_pretrained(model_name)
|
| 19 |
+
model = PegasusForConditionalGeneration.from_pretrained(model_name)
|
| 20 |
+
|
| 21 |
+
# 3. Setup Pipeline
|
| 22 |
+
monitored_tickers = ['ETH']
|
| 23 |
+
|
| 24 |
+
# 4.1. Search for Stock News using Google and Yahoo Finance
|
| 25 |
+
print('Searching for stock news for', monitored_tickers)
|
| 26 |
+
def search_for_stock_news_links(ticker):
|
| 27 |
+
search_url = 'https://www.google.com/search?q=yahoo+finance+{}&tbm=nws'.format(ticker)
|
| 28 |
+
r = requests.get(search_url)
|
| 29 |
+
soup = BeautifulSoup(r.text, 'html.parser')
|
| 30 |
+
atags = soup.find_all('a')
|
| 31 |
+
hrefs = [link['href'] for link in atags]
|
| 32 |
+
return hrefs
|
| 33 |
+
|
| 34 |
+
raw_urls = {ticker:search_for_stock_news_links(ticker) for ticker in monitored_tickers}
|
| 35 |
+
|
| 36 |
+
# 4.2. Strip out unwanted URLs
|
| 37 |
+
print('Cleaning URLs.')
|
| 38 |
+
exclude_list = ['maps', 'policies', 'preferences', 'accounts', 'support']
|
| 39 |
+
def strip_unwanted_urls(urls, exclude_list):
|
| 40 |
+
val = []
|
| 41 |
+
for url in urls:
|
| 42 |
+
if 'https://' in url and not any(exc in url for exc in exclude_list):
|
| 43 |
+
res = re.findall(r'(https?://\S+)', url)[0].split('&')[0]
|
| 44 |
+
val.append(res)
|
| 45 |
+
return list(set(val))
|
| 46 |
+
|
| 47 |
+
cleaned_urls = {ticker:strip_unwanted_urls(raw_urls[ticker] , exclude_list) for ticker in monitored_tickers}
|
| 48 |
+
|
| 49 |
+
# 4.3. Search and Scrape Cleaned URLs
|
| 50 |
+
print('Scraping news links.')
|
| 51 |
+
def scrape_and_process(URLs):
|
| 52 |
+
ARTICLES = []
|
| 53 |
+
for url in URLs:
|
| 54 |
+
r = requests.get(url)
|
| 55 |
+
soup = BeautifulSoup(r.text, 'html.parser')
|
| 56 |
+
results = soup.find_all('p')
|
| 57 |
+
text = [res.text for res in results]
|
| 58 |
+
words = ' '.join(text).split(' ')[:350]
|
| 59 |
+
ARTICLE = ' '.join(words)
|
| 60 |
+
ARTICLES.append(ARTICLE)
|
| 61 |
+
return ARTICLES
|
| 62 |
+
articles = {ticker:scrape_and_process(cleaned_urls[ticker]) for ticker in monitored_tickers}
|
| 63 |
+
|
| 64 |
+
# 4.4. Summarise all Articles
|
| 65 |
+
print('Summarizing articles.')
|
| 66 |
+
def summarize(articles):
|
| 67 |
+
summaries = []
|
| 68 |
+
for article in articles:
|
| 69 |
+
input_ids = tokenizer.encode(article, return_tensors="pt")
|
| 70 |
+
output = model.generate(input_ids, max_length=55, num_beams=5, early_stopping=True)
|
| 71 |
+
summary = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 72 |
+
summaries.append(summary)
|
| 73 |
+
return summaries
|
| 74 |
+
|
| 75 |
+
summaries = {ticker:summarize(articles[ticker]) for ticker in monitored_tickers}
|
| 76 |
+
|
| 77 |
+
# 5. Adding Sentiment Analysis
|
| 78 |
+
print('Calculating sentiment.')
|
| 79 |
+
sentiment = pipeline("sentiment-analysis")
|
| 80 |
+
scores = {ticker:sentiment(summaries[ticker]) for ticker in monitored_tickers}
|
| 81 |
+
|
| 82 |
+
# # 6. Exporting Results
|
| 83 |
+
print('Exporting results')
|
| 84 |
+
def create_output_array(summaries, scores, urls):
|
| 85 |
+
output = []
|
| 86 |
+
for ticker in monitored_tickers:
|
| 87 |
+
for counter in range(len(summaries[ticker])):
|
| 88 |
+
output_this = [
|
| 89 |
+
ticker,
|
| 90 |
+
summaries[ticker][counter],
|
| 91 |
+
scores[ticker][counter]['label'],
|
| 92 |
+
scores[ticker][counter]['score'],
|
| 93 |
+
urls[ticker][counter]
|
| 94 |
+
]
|
| 95 |
+
output.append(output_this)
|
| 96 |
+
return output
|
| 97 |
+
final_output = create_output_array(summaries, scores, cleaned_urls)
|
| 98 |
+
final_output.insert(0, ['Ticker','Summary', 'Sentiment', 'Sentiment Score', 'URL'])
|
| 99 |
+
|
| 100 |
+
with open('ethsummaries.csv', mode='w', newline='') as f:
|
| 101 |
+
csv_writer = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
| 102 |
+
csv_writer.writerows(final_output)
|