Spaces:
Runtime error
Runtime error
File size: 13,390 Bytes
b6a01d6 58fe08c b6a01d6 58fe08c b6a01d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
from __future__ import annotations
import json
import re
from typing import Any, Iterable, List
from .types import GroundedEvidence, ReasoningStep
_JSON_FENCE_RE = re.compile(r"```(?:json)?(.*?)```", re.DOTALL | re.IGNORECASE)
_STEP_MARKER_RE = re.compile(r"(?im)(?:^|\n)\s*(?:step\s*(\d+)|(\d+)[\.\)])\s*[:\-]?\s*")
_NEEDS_VISION_RE = re.compile(
r"needs[\s_]*vision\s*[:\-]?\s*(?P<value>true|false|yes|no|required|not required|necessary|unnecessary)",
re.IGNORECASE,
)
_REASON_RE = re.compile(r"reason\s*[:\-]\s*(?P<value>.+)", re.IGNORECASE)
_BOX_RE = re.compile(
r"\[\s*-?\d+(?:\.\d+)?\s*,\s*-?\d+(?:\.\d+)?\s*,\s*-?\d+(?:\.\d+)?\s*,\s*-?\d+(?:\.\d+)?\s*\]"
)
_ORDINAL_WORD_MAP = {
"first": 1,
"second": 2,
"third": 3,
"fourth": 4,
"fifth": 5,
"sixth": 6,
"seventh": 7,
"eighth": 8,
"ninth": 9,
"tenth": 10,
}
_NUMBER_WORD_MAP = {
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9,
"ten": 10,
}
_ORDINAL_STEP_RE = re.compile(
r"(?im)\b(?P<word>first|second|third|fourth|fifth|sixth|seventh|eighth|ninth|tenth)\s+step\b"
)
_WORD_STEP_RE = re.compile(
r"(?im)\bstep\s+(?P<word>one|two|three|four|five|six|seven|eight|nine|ten)\b"
)
_META_TOKENS = {"maybe", "wait", "let's", "lets", "question", "protocol"}
def _to_bool(value: Any) -> bool:
if isinstance(value, bool):
return value
if value is None:
return False
if isinstance(value, (int, float)):
return value != 0
if isinstance(value, str):
lowered = value.strip().lower()
if lowered in {"true", "t", "yes", "y", "1"}:
return True
if lowered in {"false", "f", "no", "n", "0"}:
return False
return False
def _extract_json_strings(text: str) -> Iterable[str]:
"""Return candidate JSON payloads from the response text."""
fenced = _JSON_FENCE_RE.findall(text)
if fenced:
for body in fenced:
yield body.strip()
stripped = text.strip()
if stripped:
yield stripped
def _load_first_json(text: str) -> Any:
last_error = None
for candidate in _extract_json_strings(text):
try:
return json.loads(candidate)
except json.JSONDecodeError as err:
last_error = err
continue
if last_error:
raise ValueError(f"Unable to parse JSON from response: {last_error}") from last_error
raise ValueError("Empty response, cannot parse JSON.")
def _trim_reasoning_text(text: str) -> str:
lowered = text.lower()
for anchor in ("let's draft", "draft:", "structured steps", "final reasoning"):
pos = lowered.rfind(anchor)
if pos != -1:
return text[pos:]
return text
def _clean_sentence(text: str) -> str:
return " ".join(text.strip().split())
def _normalize_step_markers(text: str) -> str:
"""Convert ordinal step markers into numeric form (e.g., 'First step' -> 'Step 1')."""
def replace_ordinal(match: re.Match[str]) -> str:
word = match.group("word").lower()
num = _ORDINAL_WORD_MAP.get(word)
return f"Step {num}" if num is not None else match.group(0)
def replace_word_number(match: re.Match[str]) -> str:
word = match.group("word").lower()
num = _NUMBER_WORD_MAP.get(word)
return f"Step {num}" if num is not None else match.group(0)
normalized = _ORDINAL_STEP_RE.sub(replace_ordinal, text)
normalized = _WORD_STEP_RE.sub(replace_word_number, normalized)
return normalized
def _extract_statement(body: str) -> str | None:
statement_match = re.search(r"statement\s*[:\-]\s*(.+?)(?=\s*(?:needs\s*vision|reason\s*[:\-]|$))", body, re.IGNORECASE | re.DOTALL)
if statement_match:
candidate = statement_match.group(1)
else:
# Fallback: take first sentence or line before metadata
candidate = re.split(r"(?i)needs\s*vision|reason\s*[:\-]", body)[0]
# Clean up the candidate
candidate = candidate.strip().rstrip(".,;:")
# If still empty or too short, return None
if not candidate or len(candidate) < 5:
return None
return _clean_sentence(candidate)
def _extract_needs_vision(body: str) -> bool:
match = _NEEDS_VISION_RE.search(body)
if not match:
return True
token = match.group("value").strip().lower()
if token in {"not required", "unnecessary"}:
return False
if token in {"required", "necessary"}:
return True
return _to_bool(token)
def _extract_reason(body: str) -> str | None:
match = _REASON_RE.search(body)
if match:
reason = match.group("value").strip()
reason = re.split(r"(?i)needs\s*vision", reason)[0].strip()
reason = reason.rstrip(".")
return reason or None
because_match = re.search(r"because\s+(.+?)(?:\.|$)", body, re.IGNORECASE)
if because_match:
reason = because_match.group(1).strip().rstrip(".")
return reason or None
return None
def _parse_step_block(index_guess: int, body: str) -> ReasoningStep | None:
statement = _extract_statement(body)
if not statement:
return None
needs_vision = _extract_needs_vision(body)
reason = _extract_reason(body)
index = index_guess if index_guess > 0 else 1
return ReasoningStep(index=index, statement=statement, needs_vision=needs_vision, reason=reason)
def _parse_reasoning_from_text(response_text: str, max_steps: int) -> List[ReasoningStep]:
text = _trim_reasoning_text(response_text)
text = _normalize_step_markers(text)
matches = list(_STEP_MARKER_RE.finditer(text))
if not matches:
return []
steps_map: dict[int, ReasoningStep] = {}
ordering: List[int] = []
fallback_index = 1
for idx, marker in enumerate(matches):
start = marker.end()
end = matches[idx + 1].start() if idx + 1 < len(matches) else len(text)
body = text[start:end].strip()
if not body:
continue
raw_index = marker.group(1) or marker.group(2)
try:
index_guess = int(raw_index) if raw_index else fallback_index
except (TypeError, ValueError):
index_guess = fallback_index
if raw_index is None:
fallback_index += 1
step = _parse_step_block(index_guess, body)
if step is None:
continue
if step.index not in steps_map:
ordering.append(step.index)
steps_map[step.index] = step
if len(ordering) >= max_steps:
break
return [steps_map[idx] for idx in ordering[:max_steps]]
def _looks_like_meta_statement(statement: str) -> bool:
lowered = statement.lower()
if any(token in lowered for token in _META_TOKENS) and "step" in lowered:
return True
if lowered.startswith(("maybe", "wait", "let's", "lets")):
return True
if len(statement) > 260 and "step" in lowered:
return True
return False
def _prune_steps(steps: List[ReasoningStep]) -> List[ReasoningStep]:
filtered: List[ReasoningStep] = []
seen_statements: set[str] = set()
for step in steps:
normalized = step.statement.strip().lower()
if _looks_like_meta_statement(step.statement):
continue
if normalized in seen_statements:
continue
seen_statements.add(normalized)
filtered.append(step)
return filtered or steps
def _extract_description(text: str, start_index: int) -> str | None:
boundary = max(text.rfind("\n", 0, start_index), text.rfind(".", 0, start_index))
if boundary == -1:
boundary = 0
snippet = text[boundary:start_index].strip(" \n.:–-")
if not snippet:
return None
return _clean_sentence(snippet)
def _parse_roi_from_text(response_text: str, default_step_index: int) -> List[GroundedEvidence]:
evidences: List[GroundedEvidence] = []
seen: set[tuple[float, float, float, float]] = set()
for match in _BOX_RE.finditer(response_text):
coords_str = match.group(0).strip("[]")
try:
coords = [float(part.strip()) for part in coords_str.split(",")]
except ValueError:
continue
if len(coords) != 4:
continue
try:
bbox = _normalize_bbox(coords)
except ValueError:
continue
key = tuple(round(c, 4) for c in bbox)
if key in seen:
continue
description = _extract_description(response_text, match.start())
evidences.append(
GroundedEvidence(
step_index=default_step_index,
bbox=bbox,
description=description,
confidence=None,
raw_source={"bbox": coords, "description": description},
)
)
seen.add(key)
return evidences
def parse_structured_reasoning(response_text: str, max_steps: int) -> List[ReasoningStep]:
"""Parse Qwen3-VL structured reasoning output into dataclasses."""
try:
payload = _load_first_json(response_text)
except ValueError as json_error:
steps = _parse_reasoning_from_text(response_text, max_steps=max_steps)
if steps:
return _prune_steps(steps)[:max_steps]
raise json_error
if not isinstance(payload, list):
raise ValueError("Structured reasoning response must be a JSON list.")
steps: List[ReasoningStep] = []
for idx, item in enumerate(payload, start=1):
if not isinstance(item, dict):
continue
statement = item.get("statement") or item.get("step") or item.get("text")
if not isinstance(statement, str):
continue
statement = statement.strip()
if not statement:
continue
step_index = item.get("index")
if not isinstance(step_index, int):
step_index = idx
needs_vision = _to_bool(item.get("needs_vision") or item.get("requires_vision"))
reason = item.get("reason") or item.get("justification")
if isinstance(reason, str):
reason = reason.strip() or None
else:
reason = None
steps.append(ReasoningStep(index=step_index, statement=statement, needs_vision=needs_vision, reason=reason))
if len(steps) >= max_steps:
break
steps = _prune_steps(steps)[:max_steps]
if not steps:
raise ValueError("No reasoning steps parsed from response.")
return steps
def _normalize_bbox(bbox: Any) -> tuple[float, float, float, float]:
if not isinstance(bbox, (list, tuple)) or len(bbox) != 4:
raise ValueError(f"Bounding box must be a list of 4 numbers, got {bbox!r}")
coords = []
for raw in bbox:
if isinstance(raw, str):
raw = raw.strip()
if not raw:
raw = 0
else:
raw = float(raw)
elif isinstance(raw, (int, float)):
raw = float(raw)
else:
raw = 0.0
coords.append(raw)
scale = max(abs(v) for v in coords) if coords else 1.0
if scale > 1.5: # assume 0..1000 or pixel coordinates
coords = [max(0.0, min(v / 1000.0, 1.0)) for v in coords]
else:
coords = [max(0.0, min(v, 1.0)) for v in coords]
x1, y1, x2, y2 = coords
x_min, x_max = sorted((x1, x2))
y_min, y_max = sorted((y1, y2))
return (x_min, y_min, x_max, y_max)
def parse_roi_evidence(response_text: str, default_step_index: int) -> List[GroundedEvidence]:
"""Parse ROI grounding output into evidence structures."""
try:
payload = _load_first_json(response_text)
except ValueError:
return _parse_roi_from_text(response_text, default_step_index=default_step_index)
if not isinstance(payload, list):
raise ValueError("ROI extraction response must be a JSON list.")
evidences: List[GroundedEvidence] = []
for item in payload:
if not isinstance(item, dict):
continue
raw_bbox = item.get("bbox") or item.get("bbox_2d") or item.get("box")
if raw_bbox is None:
continue
try:
bbox = _normalize_bbox(raw_bbox)
except ValueError:
continue
step_index = item.get("step") or item.get("step_index") or default_step_index
if not isinstance(step_index, int):
step_index = default_step_index
description = item.get("description") or item.get("caption") or item.get("detail")
if isinstance(description, str):
description = description.strip() or None
else:
description = None
confidence = item.get("confidence") or item.get("score") or item.get("probability")
if isinstance(confidence, str):
confidence = confidence.strip()
confidence = float(confidence) if confidence else None
elif isinstance(confidence, (int, float)):
confidence = float(confidence)
else:
confidence = None
evidences.append(
GroundedEvidence(
step_index=step_index,
bbox=bbox,
description=description,
confidence=confidence,
raw_source=item,
)
)
return evidences
|