Spaces:
Sleeping
Sleeping
backup
Browse files
app.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 6 |
+
from peft import PeftModel
|
| 7 |
+
from huggingface_hub import login
|
| 8 |
+
import json
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import io
|
| 11 |
+
import base64
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def check_environment():
|
| 15 |
+
required_vars = ["HF_TOKEN"]
|
| 16 |
+
missing_vars = [var for var in required_vars if var not in os.environ]
|
| 17 |
+
|
| 18 |
+
if missing_vars:
|
| 19 |
+
raise ValueError(
|
| 20 |
+
f"Missing required environment variables: {', '.join(missing_vars)}\n"
|
| 21 |
+
"Please set the HF_TOKEN environment variable with your Hugging Face token"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# # Login to Hugging Face
|
| 26 |
+
# check_environment()
|
| 27 |
+
# login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
|
| 28 |
+
|
| 29 |
+
# Load model and processor (do this outside the inference function to avoid reloading)
|
| 30 |
+
# base_model_path = (
|
| 31 |
+
# "taesiri/BugsBunny-LLama-3.2-11B-Vision-BaseCaptioner-Medium-FullModel"
|
| 32 |
+
# )
|
| 33 |
+
|
| 34 |
+
# processor = AutoProcessor.from_pretrained(base_model_path)
|
| 35 |
+
# model = MllamaForConditionalGeneration.from_pretrained(
|
| 36 |
+
# base_model_path,
|
| 37 |
+
# torch_dtype=torch.bfloat16,
|
| 38 |
+
# device_map="cuda",
|
| 39 |
+
# cache_dir="./",
|
| 40 |
+
# )
|
| 41 |
+
# #
|
| 42 |
+
# odel = PeftModel.from_pretrained(model, lora_weights_path)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 46 |
+
import torch
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
local_model_path = "../merged-llama-3.2-dummy"
|
| 50 |
+
|
| 51 |
+
# Load model and processor (do this outside the inference function to avoid reloading)
|
| 52 |
+
base_model_path = (
|
| 53 |
+
local_model_path
|
| 54 |
+
)
|
| 55 |
+
# lora_weights_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Base-Medium-LoRA"
|
| 56 |
+
|
| 57 |
+
processor = AutoProcessor.from_pretrained(base_model_path)
|
| 58 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
| 59 |
+
base_model_path,
|
| 60 |
+
torch_dtype=torch.bfloat16,
|
| 61 |
+
device_map="cuda",
|
| 62 |
+
cache_dir="./"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
model.tie_weights()
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def create_color_palette_image(colors):
|
| 69 |
+
if not colors or not isinstance(colors, list):
|
| 70 |
+
return None
|
| 71 |
+
|
| 72 |
+
try:
|
| 73 |
+
# Validate color format
|
| 74 |
+
for color in colors:
|
| 75 |
+
if not isinstance(color, str) or not color.startswith("#"):
|
| 76 |
+
return None
|
| 77 |
+
|
| 78 |
+
# Create figure and axis
|
| 79 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 80 |
+
|
| 81 |
+
# Create rectangles for each color
|
| 82 |
+
for i, color in enumerate(colors):
|
| 83 |
+
ax.add_patch(plt.Rectangle((i, 0), 1, 1, facecolor=color))
|
| 84 |
+
|
| 85 |
+
# Set the view limits and aspect ratio
|
| 86 |
+
ax.set_xlim(0, len(colors))
|
| 87 |
+
ax.set_ylim(0, 1)
|
| 88 |
+
ax.set_xticks([])
|
| 89 |
+
ax.set_yticks([])
|
| 90 |
+
|
| 91 |
+
return fig # Return the matplotlib figure directly
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"Error creating color palette: {e}")
|
| 94 |
+
return None
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def inference(image):
|
| 98 |
+
if image is None:
|
| 99 |
+
return ["Please provide an image"] * 4
|
| 100 |
+
|
| 101 |
+
if not isinstance(image, Image.Image):
|
| 102 |
+
try:
|
| 103 |
+
image = Image.fromarray(image)
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(f"Image conversion error: {e}")
|
| 106 |
+
return ["Invalid image format"] * 4
|
| 107 |
+
|
| 108 |
+
# Prepare input
|
| 109 |
+
messages = [
|
| 110 |
+
{
|
| 111 |
+
"role": "user",
|
| 112 |
+
"content": [
|
| 113 |
+
{"type": "image"},
|
| 114 |
+
{"type": "text", "text": "Analyze this image for fire, smoke, haze, or other related conditions."},
|
| 115 |
+
],
|
| 116 |
+
}
|
| 117 |
+
]
|
| 118 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 119 |
+
try:
|
| 120 |
+
# Move inputs to the correct device
|
| 121 |
+
inputs = processor(
|
| 122 |
+
image, input_text, add_special_tokens=False, return_tensors="pt"
|
| 123 |
+
).to(model.device)
|
| 124 |
+
|
| 125 |
+
# Clear CUDA cache after inference
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
output = model.generate(**inputs, max_new_tokens=2048)
|
| 128 |
+
if torch.cuda.is_available():
|
| 129 |
+
torch.cuda.empty_cache()
|
| 130 |
+
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Inference error: {e}")
|
| 133 |
+
return ["Error during inference"] * 4
|
| 134 |
+
|
| 135 |
+
# Decode output
|
| 136 |
+
result = processor.decode(output[0], skip_special_tokens=True)
|
| 137 |
+
print("DEBUG: Full decoded output:", result)
|
| 138 |
+
|
| 139 |
+
try:
|
| 140 |
+
json_str = result.strip().split("assistant\n")[1].strip()
|
| 141 |
+
parsed_json = json.loads(json_str)
|
| 142 |
+
|
| 143 |
+
# Create specific JSON subsets for each section
|
| 144 |
+
fire_analysis = {
|
| 145 |
+
"predictions": parsed_json.get("predictions", "N/A"),
|
| 146 |
+
"description": parsed_json.get("description", "No description available"),
|
| 147 |
+
"confidence_scores": parsed_json.get("confidence_score", {})
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
environment_analysis = {
|
| 151 |
+
"environmental_factors": parsed_json.get("environmental_factors", {})
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
detection_analysis = {
|
| 155 |
+
"detections": parsed_json.get("detections", []),
|
| 156 |
+
"detection_count": len(parsed_json.get("detections", []))
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
report_analysis = {
|
| 160 |
+
"uncertainty_factors": parsed_json.get("uncertainty_factors", []),
|
| 161 |
+
"false_positive_indicators": parsed_json.get("false_positive_indicators", [])
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
return (
|
| 165 |
+
json.dumps(fire_analysis, indent=2),
|
| 166 |
+
json.dumps(environment_analysis, indent=2),
|
| 167 |
+
json.dumps(detection_analysis, indent=2),
|
| 168 |
+
json.dumps(report_analysis, indent=2),
|
| 169 |
+
json_str,
|
| 170 |
+
"",
|
| 171 |
+
"Analysis complete",
|
| 172 |
+
parsed_json
|
| 173 |
+
)
|
| 174 |
+
except Exception as e:
|
| 175 |
+
print("DEBUG: Error processing response:", e)
|
| 176 |
+
return (
|
| 177 |
+
"Error processing response",
|
| 178 |
+
"",
|
| 179 |
+
"",
|
| 180 |
+
"",
|
| 181 |
+
str(result),
|
| 182 |
+
str(e),
|
| 183 |
+
"Error",
|
| 184 |
+
{}
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# Update Gradio interface
|
| 189 |
+
with gr.Blocks() as demo:
|
| 190 |
+
gr.Markdown("# Fire Detection Demo")
|
| 191 |
+
|
| 192 |
+
with gr.Row():
|
| 193 |
+
with gr.Column(scale=1):
|
| 194 |
+
image_input = gr.Image(
|
| 195 |
+
type="pil",
|
| 196 |
+
label="Upload Image",
|
| 197 |
+
elem_id="large-image",
|
| 198 |
+
)
|
| 199 |
+
submit_btn = gr.Button("Analyze Image", variant="primary")
|
| 200 |
+
|
| 201 |
+
# Add examples here
|
| 202 |
+
gr.Examples(
|
| 203 |
+
examples=[
|
| 204 |
+
"examples/Birch MWF014-0001.png",
|
| 205 |
+
"examples/Birch MWF014-0006.png",
|
| 206 |
+
"examples/Blackstone PB-0010.png",
|
| 207 |
+
],
|
| 208 |
+
inputs=image_input,
|
| 209 |
+
label="Example Images",
|
| 210 |
+
examples_per_page=4
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
with gr.Tabs() as tabs:
|
| 214 |
+
with gr.Tab("Analysis Results"):
|
| 215 |
+
with gr.Row():
|
| 216 |
+
with gr.Column():
|
| 217 |
+
fire_output = gr.JSON(
|
| 218 |
+
label="Fire Details",
|
| 219 |
+
lines=4,
|
| 220 |
+
)
|
| 221 |
+
with gr.Column():
|
| 222 |
+
environment_output = gr.JSON(
|
| 223 |
+
label="Environment Details",
|
| 224 |
+
lines=4,
|
| 225 |
+
)
|
| 226 |
+
with gr.Row():
|
| 227 |
+
with gr.Column():
|
| 228 |
+
detection_output = gr.JSON(
|
| 229 |
+
label="Detection Details",
|
| 230 |
+
lines=4,
|
| 231 |
+
)
|
| 232 |
+
with gr.Column():
|
| 233 |
+
report_output = gr.JSON(
|
| 234 |
+
label="Report Details",
|
| 235 |
+
lines=4,
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
with gr.Tab("JSON Output", id=0):
|
| 239 |
+
json_output = gr.JSON(
|
| 240 |
+
label="Detailed JSON Results",
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
with gr.Tab("Raw Output"):
|
| 244 |
+
raw_output = gr.Textbox(
|
| 245 |
+
label="Raw JSON Response",
|
| 246 |
+
lines=10,
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
error_box = gr.Textbox(label="Error Messages", visible=False)
|
| 250 |
+
status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
| 251 |
+
|
| 252 |
+
submit_btn.click(
|
| 253 |
+
fn=inference,
|
| 254 |
+
inputs=[image_input],
|
| 255 |
+
outputs=[
|
| 256 |
+
fire_output,
|
| 257 |
+
environment_output,
|
| 258 |
+
detection_output,
|
| 259 |
+
report_output,
|
| 260 |
+
raw_output,
|
| 261 |
+
error_box,
|
| 262 |
+
status_text,
|
| 263 |
+
json_output,
|
| 264 |
+
],
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
demo.launch(share=True)
|