#!/usr/bin/env python3 """ Step Audio R1 vLLM Gradio Interface """ import base64 import json import os import gradio as gr import httpx API_BASE_URL = os.getenv("API_BASE_URL", "http://localhost:9999/v1") MODEL_NAME = os.getenv("MODEL_NAME", "Step-Audio-R1") def encode_audio(audio_path): """编码音频为base64""" if not audio_path or not os.path.exists(audio_path): return None try: with open(audio_path, "rb") as f: return base64.b64encode(f.read()).decode() except Exception as e: print(f"[DEBUG] Audio error: {e}") return None def format_messages(system, history, user_text, audio_data=None, audio_format="wav"): """Format message list""" messages = [] if system: messages.append({"role": "system", "content": system}) if not history: history = [] # 处理历史记录 for item in history: # 支持 list of dicts 格式 if isinstance(item, dict) and "role" in item and "content" in item: messages.append(item) # 支持 Gradio ChatMessage 对象 elif hasattr(item, "role") and hasattr(item, "content"): messages.append({"role": item.role, "content": item.content}) # 添加当前用户消息 if user_text and audio_data: messages.append({ "role": "user", "content": [ { "type": "input_audio", "input_audio": { "data": audio_data, "format": audio_format } }, { "type": "text", "text": user_text } ] }) elif user_text: messages.append({"role": "user", "content": user_text}) elif audio_data: messages.append({ "role": "user", "content": [ { "type": "input_audio", "input_audio": { "data": audio_data, "format": audio_format } } ] }) return messages def chat(system_prompt, user_text, audio_file, history, max_tokens, temperature, top_p, model_name=None): """Chat function""" # If model is not specified, use global configuration if model_name is None: model_name = MODEL_NAME if not user_text and not audio_file: return history or [], "Please enter text or upload audio" # Ensure history is a list and formatted correctly history = history or [] clean_history = [] for item in history: if isinstance(item, dict) and 'role' in item and 'content' in item: clean_history.append(item) elif hasattr(item, "role") and hasattr(item, "content"): # Keep ChatMessage object clean_history.append(item) history = clean_history # Process audio audio_data = None audio_format = "wav" if audio_file: audio_data = encode_audio(audio_file) if audio_file.lower().endswith(".mp3"): audio_format = "mp3" messages = format_messages(system_prompt, history, user_text, audio_data, audio_format) if not messages: return history or [], "Invalid input" # Debug: Print message format print(f"[DEBUG] Messages to API: {json.dumps(messages, ensure_ascii=False, indent=2)}") print(f"[DEBUG] Messages type: {type(messages)}") for i, msg in enumerate(messages): print(f"[DEBUG] Message {i}: {type(msg)} - {msg}") try: with httpx.Client(base_url=API_BASE_URL, timeout=120) as client: response = client.post("/chat/completions", json={ "model": model_name, "messages": messages, "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "stream": True, "repetition_penalty": 1.07, "stop_token_ids": [151665] }) if response.status_code != 200: error_msg = f"❌ API Error {response.status_code}" if response.status_code == 404: error_msg += " - vLLM service not ready" elif response.status_code == 400: error_msg += " - Bad request" elif response.status_code == 500: error_msg += " - Model error" return history, error_msg # Process streaming response content_parts = [] for line in response.iter_lines(): if not line: continue # Ensure line is string format if isinstance(line, bytes): line = line.decode('utf-8') else: line = str(line) if line.startswith('data: '): data_str = line[6:] if data_str.strip() == '[DONE]': break try: data = json.loads(data_str) if 'choices' in data and len(data['choices']) > 0: delta = data['choices'][0].get('delta', {}) if 'content' in delta: content_parts.append(delta['content']) except json.JSONDecodeError: continue full_content = ''.join(content_parts) # Update history - only add when no error history = history or [] # Add user message if audio_file: # If audio exists, show audio file and text (if any) # Gradio Chatbot supports tuple (file_path,) to show file # But in messages format, we need to construct proper content # Here we use tuple format to let Gradio render audio player, or use HTML # Simpler way: if multimodal, add messages separately # 1. Add audio message history.append({"role": "user", "content": gr.Audio(audio_file)}) # 2. If text exists, add text message if user_text: history.append({"role": "user", "content": user_text}) else: # Text only history.append({"role": "user", "content": user_text}) # Split think and content if "" in full_content: parts = full_content.split("", 1) think_content = parts[0].strip() response_content = parts[1].strip() # Remove possible start tag if think_content.startswith(""): think_content = think_content[len(""):].strip() # Add thinking process message (use ChatMessage and metadata) if think_content: history.append(gr.ChatMessage( role="assistant", content=think_content, metadata={"title": "⏳ Thinking Process"} )) # Add formal response message if response_content: history.append({"role": "assistant", "content": response_content}) else: # No think tag, add full response directly assistant_text = full_content.strip() if assistant_text: history.append({"role": "assistant", "content": assistant_text}) return history, "" except httpx.ConnectError: return history, "❌ Cannot connect to vLLM API" except Exception as e: return history, f"❌ Error: {str(e)}" # Gradio Interface with gr.Blocks(title="Step Audio R1") as demo: gr.Markdown("# Step Audio R1 Chat") with gr.Row(): # Left Configuration with gr.Column(scale=1): with gr.Accordion("Configuration", open=True): system_prompt = gr.Textbox( label="System Prompt", lines=2, value="You are an audio analysis expert" ) max_tokens = gr.Slider(1, 8192, value=1024, label="Max Tokens") temperature = gr.Slider(0.0, 2.0, value=0.7, label="Temperature") top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top P") status = gr.Textbox(label="Status", interactive=False) # Right Chat with gr.Column(scale=2): chatbot = gr.Chatbot(label="Chat History", height=450) user_text = gr.Textbox(label="Input", lines=2, placeholder="Enter message...") audio_file = gr.Audio(label="Audio", type="filepath", sources=["microphone", "upload"]) with gr.Row(): submit_btn = gr.Button("Send", variant="primary", scale=2) clear_btn = gr.Button("Clear", scale=1) # 事件绑定 - 函数将在启动时定义 # 直接绑定 chat 函数;不要传递外部的 `model_to_use`,chat 使用默认的 `MODEL_NAME` 或内部参数 submit_btn.click( fn=chat, inputs=[system_prompt, user_text, audio_file, chatbot, max_tokens, temperature, top_p], outputs=[chatbot, status] ) clear_btn.click( fn=lambda: ([], "", None), outputs=[chatbot, user_text, audio_file] ) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--host", default="0.0.0.0") parser.add_argument("--port", type=int, default=7860) parser.add_argument("--model", default=MODEL_NAME) args = parser.parse_args() # 更新全局模型名称 if args.model: MODEL_NAME = args.model print(f"启动Gradio: http://{args.host}:{args.port}") print(f"API地址: {API_BASE_URL}") print(f"模型: {MODEL_NAME}") demo.launch(server_name=args.host, server_port=args.port, share=False)