Eachan Johnson commited on
Commit
997150d
·
0 Parent(s):

Initial commit

Browse files
.github/workflows/hf-sync.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face hub
2
+ on:
3
+ push:
4
+ branches: [main]
5
+
6
+ # to run this workflow manually from the Actions tab
7
+ workflow_dispatch:
8
+
9
+ jobs:
10
+ sync-to-hub:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v4
14
+ with:
15
+ fetch-depth: 0
16
+ lfs: true
17
+ - name: Push to hub
18
+ env:
19
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
20
+ run: git push https://HF_USERNAME:[email protected]/spaces/scbirlab/tutorial-seq-fitness main
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ __pycache__/
2
+ .venv/
3
+ .gradio/
README.md ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Tutorial - Fitness estimation from pooled growth and NGS
3
+ emoji: 🧮
4
+ colorFrom: green
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 5.22.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ short_description: How do strains grow when competing with each other? And how can we infer their fitness from next-generation sequencing data?
12
+ tags:
13
+ - biology
14
+ - sequencing
15
+ ---
16
+
17
+ # Tutorial – Fitness estimation from pooled growth
18
+
19
+ [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/scbirlab/tutorial-seq-fitness)
20
+
21
+ This is the repository for the interactive tutorial, acccessed [here](https://huggingface.co/spaces/scbirlab/tutorial-seq-fitness). Non-interactive text from the tutorial is below.
22
+
23
+ ## Multiplex growth curves
24
+
25
+ How do strains grow when competing with each other?
26
+
27
+ That's given by the [Lotka–Volterra competition model](https://en.wikipedia.org/wiki/Competitive_Lotka%E2%80%93Volterra_equations).
28
+ For two strains:
29
+
30
+ $$
31
+ \frac{dn_{wt}}{dt} = w_{wt} n_{wt} \left( 1 - \frac{n_{wt} + n_{1}}{K} \right)
32
+ $$
33
+
34
+ $$
35
+ \frac{dn_1}{dt} = w_{1} n_1 \left( 1 - \frac{n_{wt} + n_{1}}{K} \right)
36
+ $$
37
+
38
+
39
+ - $n_i(t)$: abundance of species (or strain) $i$ at time $t$.
40
+ - $w_i$: intrinsic (exponential) growth rate of species $i$.
41
+ - $K$: carrying capacity.
42
+
43
+ We can generalize to many strains. For each one:
44
+
45
+ $$
46
+ \frac{dn_i}{dt} = w_{i} n_i \left( 1 - \frac{\Sigma_j n_j}{K} \right)
47
+ $$
48
+
49
+ It's not possible to algebraically integrate these equations, since they are
50
+ circularly dependent on each other. But we can numerically integrate, to simulate
51
+ multiplexed growth curves.
52
+
53
+ ### Removing time dependence
54
+
55
+ It can be difficult to get absolute fitness out of these curves, because
56
+ when the pool approaches the carrying capacity, all the strains growth rates
57
+ mutually affect each other.
58
+
59
+ However, if we're only interested in the relative fitness of multiplexed strains relative
60
+ to a reference (e.g. wild-type) strain, then we can make this simplification:
61
+
62
+ $$
63
+ \frac{dn_{i}}{dt} / \frac{dn_{wt}}{dt} = \frac{dn_{i}}{dn_{wt}} = \frac{w_{i} n_i}{w_{wt} n_{wt}}
64
+ $$
65
+
66
+ The interdependency term cancels out, and time is removed, with the reference strain's
67
+ growth acting as the clock. Unlike the time-dependent Lotka-Volterra equations, this
68
+ has a closed-form integral:
69
+
70
+ $$
71
+ \log n_i(t) = \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)} + \log{n_i(0)}
72
+ $$
73
+
74
+ So now the log of the number of cells of a mutant at any moment ($n_1(t)$) is dependent only
75
+ on its inoculum ($n_1(0)$), how much the reference strain has grown (i.e. fold-expansion,
76
+ $\frac{n_{wt}(t)}{n_{wt}(0)}$), and the ratio of fitness between the mutant and the
77
+ reference ($\frac{n_{wt}(t)}{n_{wt}(0)}$).
78
+
79
+ ## Read counts from next-generation sequencing
80
+
81
+ But we don't actually measure the number of cells directly. Instead, we're measuring the
82
+ number of reads (or UMIs) which represent a random sampling of the population followed by
83
+ molecular biology handling and uneven sequencing per lane which decouples the relative
84
+ abundances for each timepoint.
85
+
86
+ Below, you can simulate read counts for technical replicates of the growth curves above.
87
+ The simulation:
88
+
89
+ 1. Randomly samples a defined fraction of the cell population (without replacement, i.e.
90
+ the [Hypergeometric distribution](https://en.wikipedia.org/wiki/Hypergeometric_distribution)).
91
+ Smaller samples from smaller populations are noisier.
92
+ 2. Calculates the resulting proportional representation of every strain in every sample.
93
+ 3. Multiplies that proportion by read depth.
94
+ 4. Randomly samples sequencing read counts resulting from variations in library construction
95
+ and other stochasticity, according to the
96
+ [Negative Binomial distribution](https://en.wikipedia.org/wiki/Negative_binomial_distribution),
97
+ an established noise model for sequencing counts.
98
+
99
+ ### Accounting for sequencing subsampling per sample
100
+
101
+ Each sequencing sample $s$ could be over- or under-sampling the population relative to the first
102
+ timepoint by some factor $\phi_s$.
103
+
104
+ $$\log \frac{c_i(t)}{c_i(0)} = \log \phi_s\frac{n_i(t)}{n_i(0)} = \log \phi_s + \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)}$$
105
+
106
+ Variables:
107
+ - $c_i(t)$: Read (or UMI) count of strain $i$ at time $t$
108
+ - $\phi_s$: The ratio of sampling depth at time $t$ to that at time $0$ for sample $s$
109
+
110
+ The factor $\phi_s$ is the ratio of _the ratio of read counts between samples_
111
+ and _the ratio of cell counts between samples_ for any strain (assuming each strain
112
+ is sampled without bias):
113
+
114
+ $$\log \phi_s = \log \frac{c_i(t)}{c_i(0)} - \log \frac{n_i(0)}{n_i(0)}$$
115
+
116
+ We can get rid of the nuisance parameter $\phi_s$ (which is difficult to measure becuase
117
+ we don't know the true number of cells for each strain and sample) using the following trick.
118
+
119
+ We have the equation for read counts for mutant $i$ (same as above):
120
+
121
+ $$
122
+ \log \frac{c_i(t)}{c_i(0)} = \log \phi_s + \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)}
123
+ $$
124
+
125
+ And for the reference strain (relative fitness is 1):
126
+
127
+ $$
128
+ \log \frac{c_{wt}(t)}{c_{wt}(0)} = \log \phi_s + \log \frac{n_{wt}(t)}{n_{wt}(0)}
129
+ $$
130
+
131
+ We can make $\phi_s$ disappear by taking the difference:
132
+
133
+ $$
134
+ \log \frac{c_i(t)}{c_i(0)} - \log \frac{c_{wt}(t)}{c_{wt}(0)} = \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)} - \log \frac{n_{wt}(t)}{n_{wt}(0)}
135
+ $$
136
+
137
+ This is equivalent to:
138
+
139
+ $$
140
+ \log \left( \frac{c_i(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_i(0)} \right) = \left(\frac{w_i}{w_{wt}} - 1 \right) \log \frac{n_{wt}(t)}{n_{wt}(0)}
141
+ $$
142
+
143
+ So the ratio of _the count ratio of a strain to the reference strain at time t_ to
144
+ _the count ratio of a strain to the reference strain at time 0_ is
145
+ dependent only on the relative fitness and the true fold-expansion of the reference strain.
146
+
147
+ Plotting the ratio of _the count ratio of a strain to the reference strain at time t_ to
148
+ _the count ratio of a strain to the reference strain at time 0_
149
+ should give a straight line (on a log-log) plot, with intercept 0 and gradient equal to the relative fitness minus 1.
150
+
151
+ ### Using spike-in counts
152
+
153
+ But we don't actually know the true fold-expansion of the reference strain, since
154
+ it's not directly observed. However, a non-growing fitness-zero control can help,
155
+ such as a heat-killed strain or a spike-in plasmid.
156
+
157
+ We start with the equation before,
158
+
159
+ $$
160
+ \log \left( \frac{c_i(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_i(0)} \right) = \left(\frac{w_i}{w_{wt}} - 1 \right) \log \frac{n_{wt}(t)}{n_{wt}(0)}
161
+ $$
162
+
163
+ But for the fitness-zero control, $w_{spike} = 0$, so:
164
+
165
+ $$
166
+ \log \left( \frac{c_{spike}(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_{spike}(0)} \right) = -\log \frac{n_{wt}(t)}{n_{wt}(0)}
167
+ $$
168
+
169
+ This means that, although we don't know how the reference strain grows directly, its
170
+ growth is given from the ratio of the spike counts to the reference counts, normalized
171
+ to the same ratio at time 0.
172
+
173
+ This leaves us with the overall equation:
174
+
175
+ $$
176
+ \log \left( \frac{c_i(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_i(0)} \right) = \left(1 - \frac{w_i}{w_{wt}} \right) \log \left( \frac{c_{spike}(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_{spike}(0)} \right)
177
+ $$
178
+
179
+ If we plot the left hand side against the right, we should get a straight line for
180
+ each strain with intercept zero and gradient $1 - \frac{w_i}{w_{wt}}$.
app.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from functools import partial
3
+ import os
4
+
5
+ from carabiner.mpl import add_legend, grid, colorblind_palette
6
+ import gradio as gr
7
+ import numpy as np
8
+ import matplotlib as mpl
9
+ import matplotlib.pyplot as plt
10
+ from scipy.integrate import solve_ivp
11
+ from scipy.stats import multivariate_hypergeom, nbinom
12
+
13
+ # Set the default color cycle
14
+ mpl.rcParams['axes.prop_cycle'] = mpl.cycler(
15
+ color=("lightgrey", "dimgrey") + colorblind_palette()[1:],
16
+ )
17
+
18
+ SEED: int = 42
19
+ MAX_TIME: float = 5.
20
+ SOURCES_DIR: str = "sources"
21
+
22
+
23
+ def inject_markdown(filename):
24
+ with open(os.path.join(SOURCES_DIR, filename), 'r') as f:
25
+ md = f.read()
26
+ return gr.Markdown(
27
+ md,
28
+ latex_delimiters=[
29
+ {"left": "$$", "right": "$$", "display": True},
30
+ {"left": "$", "right": "$", "display": False},
31
+ ],
32
+ )
33
+
34
+
35
+ def lotka_volterra(t, y, w, K):
36
+ remaining_capacity = np.sum(y) / K
37
+ dy = w * y.flatten() * (1. - remaining_capacity)
38
+ return dy
39
+
40
+
41
+ def grow(t, n0, w, K=None):
42
+ """Deterministic population size at time t.
43
+
44
+ n0 : initial cells
45
+ w : growth rate
46
+ t : time (arbitrary units)
47
+ K : carrying capacity (None → pure exponential)
48
+
49
+ """
50
+ if K is None:
51
+ return n0 * np.exp(w[None] * t[:,None])
52
+ # logistic with shared K
53
+ else:
54
+ ode_solution = solve_ivp(
55
+ lotka_volterra,
56
+ t_span=sorted(set([0, max(t)])),
57
+ t_eval=sorted(t),
58
+ y0=n0,
59
+ vectorized=True,
60
+ args=(w, K),
61
+ )
62
+ # print(ode_solution)
63
+ return ode_solution.y
64
+
65
+
66
+ def plotter_t(x, growths, scatter=False, **kwargs):
67
+ fig, axes = grid(aspect_ratio=1.5)
68
+ plotter_f = partial(axes.scatter, s=5.) if scatter else axes.plot
69
+ for i, y in enumerate(growths):
70
+ plotter_f(
71
+ x.flatten(), y.flatten(),
72
+ label=f"Mutant {i-1}" if i > 1 else "_none",
73
+ )
74
+ axes.set(
75
+ xlabel="Time",
76
+ yscale="log",
77
+ **kwargs,
78
+ )
79
+ add_legend(axes)
80
+ return fig
81
+
82
+
83
+ def plotter_ref(x, growths, scatter=False, fitlines=None, text=None, **kwargs):
84
+ fig, axes = grid(aspect_ratio=1.5 if text is None else 1.7)
85
+ plotter_f = partial(axes.scatter, s=5.) if scatter else axes.plot
86
+ for i, y in enumerate(growths):
87
+ plotter_f(
88
+ x.flatten(), y.flatten(),
89
+ label=f"Mutant {i-1}" if i > 1 else "_none",
90
+ )
91
+ if fitlines is not None:
92
+ fit_x, fit_y = fitlines
93
+ for i, b in enumerate(fit_y.flatten()):
94
+ y = np.exp(np.log(fit_x) @ b[None])
95
+ print(fit_x.shape, y.shape, b)
96
+ axes.plot(
97
+ fit_x.flatten(), y.flatten(),
98
+ label="_none",
99
+ )
100
+ if text is not None:
101
+ axes.text(
102
+ 1.05, .1,
103
+ text,
104
+ fontsize=10,
105
+ transform=axes.transAxes,
106
+ )
107
+ axes.set(
108
+ xscale="log",
109
+ yscale="log",
110
+ **kwargs,
111
+ )
112
+ add_legend(axes)
113
+ return fig
114
+
115
+
116
+ def calculate_growth_curves(inoculum, inoculum_var, carrying_capacity, fitness, n_timepoints=100):
117
+ inoculum_var = inoculum + inoculum_var * np.square(inoculum)
118
+ p = inoculum / inoculum_var
119
+ n = (inoculum ** 2.) / (inoculum_var - inoculum)
120
+ w = [1., 0.] + list(fitness)
121
+ n0 = nbinom.rvs(n, p, size=len(w), random_state=SEED)
122
+ t = np.linspace(0., MAX_TIME, num=int(n_timepoints))
123
+ growths = grow(t, n0, w, inoculum * carrying_capacity)
124
+ ref_expansion = growths[0] / n0[0]
125
+ return t, ref_expansion, growths
126
+
127
+
128
+ def growth_plotter(inoculum, inoculum_var, carrying_capacity, *fitness):
129
+ t, ref_expansion, growths = calculate_growth_curves(inoculum, inoculum_var, carrying_capacity, fitness, n_timepoints=100)
130
+ return [
131
+ plotter_t(
132
+ t,
133
+ growths,
134
+ ylabel="Number of cells per strain",
135
+ ),
136
+ plotter_ref(
137
+ ref_expansion,
138
+ growths,
139
+ xlabel="Fold-expansion of wild-type",
140
+ ylabel="Number of cells per strain",
141
+ ),
142
+ ]
143
+
144
+
145
+ def reads_sampler(population, sample_frac, seq_depth, reps, variance):
146
+ samples = []
147
+ for i, timepoint_pop in enumerate(np.split(population.astype(int), population.shape[-1], axis=-1)):
148
+ sample_size = np.floor(timepoint_pop.sum() * sample_frac).astype(int)
149
+ samples.append(
150
+ multivariate_hypergeom.rvs(
151
+ m=timepoint_pop.flatten(),
152
+ n=sample_size,
153
+ size=reps,
154
+ random_state=SEED + i,
155
+ ).T
156
+ )
157
+ samples = np.stack(samples, axis=-2)
158
+ read_means = np.floor(seq_depth * samples.shape[0] * samples / samples.sum(axis=0, keepdims=True))
159
+ variance = read_means + variance * np.square(read_means)
160
+ p = read_means / variance
161
+ n = (read_means ** 2.) / (variance - read_means)
162
+ return np.stack([
163
+ nbinom.rvs(n[...,i], p[...,i], random_state=SEED + i)
164
+ for i in range(reps)
165
+ ], axis=-1)
166
+
167
+
168
+ def fitness_fitter(read_counts, ref_expansion):
169
+
170
+ read_count_expansion = read_counts / np.mean(read_counts[:,:1], axis=-1, keepdims=True)
171
+ read_count_expansion_ref = read_count_expansion[:1]
172
+ log_read_count_correction = np.log(read_count_expansion) - np.log(read_count_expansion_ref)
173
+
174
+ ref_expansion = np.tile(
175
+ np.log(ref_expansion)[:,None],
176
+ (1, log_read_count_correction.shape[-1]),
177
+ ).reshape((-1, 1))
178
+ betas = []
179
+ for i, log_strain_counts_corrected in enumerate(log_read_count_correction):
180
+ ols_fit = np.linalg.lstsq(a=ref_expansion, b=log_strain_counts_corrected.flatten())
181
+ betas.append(ols_fit[0])
182
+
183
+ return log_read_count_correction, np.asarray(betas)
184
+
185
+
186
+ def fitness_fitter_spike(log_read_count_corrected):
187
+ log_spike_count_corrected = log_read_count_corrected[1,...].flatten()[...,None]
188
+ betas = []
189
+ for i, log_strain_counts_corrected in enumerate(log_read_count_corrected):
190
+ ols_fit = np.linalg.lstsq(
191
+ a=log_spike_count_corrected,
192
+ b=log_strain_counts_corrected.flatten(),
193
+ )
194
+ betas.append(ols_fit[0])
195
+
196
+ return log_spike_count_corrected, np.asarray(betas)
197
+
198
+
199
+ def reads_plotter(
200
+ sample_frac, seq_reps, seq_depth, read_var,
201
+ inoculum, inoculum_var, carrying_capacity, *fitness
202
+ ):
203
+ t, ref_expansion, growths = calculate_growth_curves(inoculum, inoculum_var, carrying_capacity, fitness, n_timepoints=10)
204
+ read_counts = reads_sampler(growths, sample_frac, seq_depth, seq_reps, read_var)
205
+ log_read_count_correction, betas = fitness_fitter(read_counts, ref_expansion)
206
+ plot_text = "\n".join(
207
+ f"Mutant {i-1}: $w_{i-1}/w_{'{wt}'}={1. + b:.2f}$"
208
+ for i, b in enumerate(betas.flatten()) if i > 1
209
+ )
210
+ log_spike_count_corrected, spike_betas = fitness_fitter_spike(log_read_count_correction)
211
+ plot_text_spike = "\n".join(
212
+ f"Mutant {i-1}: $w_{i-1}/w_{'{wt}'}={1. - b:.2f}$"
213
+ for i, b in enumerate(spike_betas.flatten()) if i > 1
214
+ )
215
+ read_count_correction = np.exp(log_read_count_correction)
216
+ return growth_plotter(inoculum, inoculum_var, carrying_capacity, *fitness) + [
217
+ plotter_t(
218
+ np.tile(t[:,None], (1, seq_reps)),
219
+ read_counts,
220
+ scatter=True,
221
+ ylabel="Read counts per strain",
222
+ ),
223
+ plotter_ref(
224
+ np.tile(ref_expansion[:,None], (1, seq_reps)),
225
+ read_count_correction,
226
+ scatter=True,
227
+ fitlines=(ref_expansion[:,None], betas),
228
+ text=plot_text,
229
+ xlabel="Fold-expansion of wild-type",
230
+ ylabel="$\\frac{c_1(t)}{c_{wt}(t)} / \\frac{c_1(0)}{c_{wt}(0)}$",
231
+ ),
232
+ plotter_ref(
233
+ read_count_correction[1:2,...],
234
+ read_count_correction,
235
+ scatter=True,
236
+ fitlines=(read_count_correction[1:2,...].flatten()[...,None], spike_betas),
237
+ text=plot_text_spike,
238
+ xlabel="$\\frac{c_{spike}(t)}{c_{wt}(t)} / \\frac{c_{spike}(0)}{c_{wt}(0)}$",
239
+ ylabel="$\\frac{c_1(t)}{c_{wt}(t)} / \\frac{c_1(0)}{c_{wt}(0)}$",
240
+ ),
241
+ ]
242
+
243
+ with gr.Blocks() as demo:
244
+ inject_markdown("header.md")
245
+ # Growth curves
246
+ inject_markdown("growth-curve-intro.md")
247
+ mut_fitness_defaults = [.5, 2., .2]
248
+ with gr.Row():
249
+ relative_fitness = [
250
+ gr.Slider(0., 3., step=.1, value=w, label=f"Relative fitness, mutant {i + 1}")
251
+ for i, w in enumerate(mut_fitness_defaults)
252
+ ]
253
+ with gr.Row():
254
+ n_mutants = len(mut_fitness_defaults)
255
+ inoculum = gr.Slider(
256
+ 10, 1_000_000,
257
+ step=10,
258
+ value=1000,
259
+ label="Average inoculum per strain",
260
+ )
261
+ inoculum_var = gr.Slider(
262
+ .001, 1.,
263
+ step=.001,
264
+ value=.001,
265
+ label="Inoculum variance between strains",
266
+ )
267
+ carrying_capacity = gr.Slider(
268
+ len(mut_fitness_defaults) + 1, 10_000,
269
+ step=1, value=10,
270
+ label="Total carrying capacity ($\times$ inoculum)",
271
+ )
272
+ plot_growth = gr.Button("Plot growth curves")
273
+ growth_curves_t = gr.Plot(label="Growth vs time", format="png")
274
+
275
+ inject_markdown("growth-curve-t-independent.md")
276
+ growth_curves_ref = gr.Plot(label="Growth vs WT expansion", format="png")
277
+ growth_curves = [growth_curves_t, growth_curves_ref]
278
+
279
+ # Read counts
280
+ inject_markdown("read-counts-intro.md")
281
+ with gr.Row():
282
+ sample_frac = gr.Slider(
283
+ .001, 1., step=.001,
284
+ value=.1,
285
+ label="Fraction of population per sample",
286
+ )
287
+ seq_reps = gr.Slider(
288
+ 1, 10,
289
+ step=1,
290
+ value=3,
291
+ label="Technical replicates",
292
+ )
293
+ with gr.Row():
294
+ seq_depth = gr.Slider(
295
+ 10, 10_000,
296
+ step=10,
297
+ value=10_000,
298
+ label="Average reads per strain per sample",
299
+ )
300
+ read_var = gr.Slider(
301
+ .001, 1.,
302
+ step=.001,
303
+ value=.001,
304
+ label="Sequencing variance",
305
+ )
306
+ plot_reads = gr.Button("Plot read counts")
307
+ read_curves_t = gr.Plot(label="Read counts vs time", format="png")
308
+
309
+ inject_markdown("read-counts-expansion.md")
310
+ read_curves_ref = gr.Plot(label="Read count diff vs WT expansion", format="png")
311
+
312
+ inject_markdown("read-counts-spike.md")
313
+ read_curves_t2 = gr.Plot(label="Read count diff vs spike count diff", format="png")
314
+
315
+ read_curves = [
316
+ read_curves_t,
317
+ read_curves_ref,
318
+ read_curves_t2,
319
+ ]
320
+
321
+ # Events
322
+ plot_growth.click(
323
+ fn=growth_plotter,
324
+ inputs=[inoculum, inoculum_var, carrying_capacity, *relative_fitness],
325
+ outputs=growth_curves,
326
+ )
327
+ plot_reads.click(
328
+ fn=reads_plotter,
329
+ inputs=[sample_frac, seq_reps, seq_depth, read_var] + [inoculum, inoculum_var, carrying_capacity, *relative_fitness],
330
+ outputs=growth_curves + read_curves,
331
+ )
332
+
333
+ demo.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ carabiner-tools[pd,mpl]>=0.0.4
2
+ numpy<2
3
+ gradio==5.23.3
4
+ scipy
sources/growth-curve-intro.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Multiplex growth curves
2
+
3
+ How do strains grow when competing with each other?
4
+
5
+ That's given by the [Lotka–Volterra competition model](https://en.wikipedia.org/wiki/Competitive_Lotka%E2%80%93Volterra_equations).
6
+ For two strains:
7
+
8
+ $$
9
+ \frac{dn_{wt}}{dt} = w_{wt} n_{wt} \left( 1 - \frac{n_{wt} + n_{1}}{K} \right)
10
+ $$
11
+
12
+ $$
13
+ \frac{dn_1}{dt} = w_{1} n_1 \left( 1 - \frac{n_{wt} + n_{1}}{K} \right)
14
+ $$
15
+
16
+
17
+ - $n_i(t)$: abundance of species (or strain) $i$ at time $t$.
18
+ - $w_i$: intrinsic (exponential) growth rate of species $i$.
19
+ - $K$: carrying capacity.
20
+
21
+ We can generalize to many strains. For each one:
22
+
23
+ $$
24
+ \frac{dn_i}{dt} = w_{i} n_i \left( 1 - \frac{\Sigma_j n_j}{K} \right)
25
+ $$
26
+
27
+ It's not possible to algebraically integrate these equations, since they are
28
+ circularly dependent on each other. But we can numerically integrate, to simulate
29
+ multiplexed growth curves.
sources/growth-curve-t-independent.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Removing time dependence
2
+
3
+ It can be difficult to get absolute fitness out of these curves, because
4
+ when the pool approaches the carrying capacity, all the strains growth rates
5
+ mutually affect each other.
6
+
7
+ However, if we're only interested in the relative fitness of multiplexed strains relative
8
+ to a reference (e.g. wild-type) strain, then we can make this simplification:
9
+
10
+ $$
11
+ \frac{dn_{i}}{dt} / \frac{dn_{wt}}{dt} = \frac{dn_{i}}{dn_{wt}} = \frac{w_{i} n_i}{w_{wt} n_{wt}}
12
+ $$
13
+
14
+ The interdependency term cancels out, and time is removed, with the reference strain's
15
+ growth acting as the clock. Unlike the time-dependent Lotka-Volterra equations, this
16
+ has a closed-form integral:
17
+
18
+ $$
19
+ \log n_i(t) = \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)} + \log{n_i(0)}
20
+ $$
21
+
22
+ So now the log of the number of cells of a mutant at any moment ($n_1(t)$) is dependent only
23
+ on its inoculum ($n_1(0)$), how much the reference strain has grown (i.e. fold-expansion,
24
+ $\frac{n_{wt}(t)}{n_{wt}(0)}$), and the ratio of fitness between the mutant and the
25
+ reference ($\frac{n_{wt}(t)}{n_{wt}(0)}$).
26
+
27
+ Plotting the number of cells of a mutant against the reference fold-expansion gives
28
+ a straight line (on log scales), with intercept being the mutant inoculum and gradient
29
+ being its relative fitness with respect to the reference strain's fitness.
30
+
sources/header.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # Fitness estimation from pooled growth
sources/read-counts-expansion.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Accounting for sequencing subsampling per sample
2
+
3
+ Each sequencing sample $s$ could be over- or under-sampling the population relative to the first
4
+ timepoint by some factor $\phi_s$.
5
+
6
+ $$\log \frac{c_i(t)}{c_i(0)} = \log \phi_s\frac{n_i(t)}{n_i(0)} = \log \phi_s + \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)}$$
7
+
8
+ Variables:
9
+ - $c_i(t)$: Read (or UMI) count of strain $i$ at time $t$
10
+ - $\phi_s$: The ratio of sampling depth at time $t$ to that at time $0$ for sample $s$
11
+
12
+ The factor $\phi_s$ is the ratio of _the ratio of read counts between samples_
13
+ and _the ratio of cell counts between samples_ for any strain (assuming each strain
14
+ is sampled without bias):
15
+
16
+ $$\log \phi_s = \log \frac{c_i(t)}{c_i(0)} - \log \frac{n_i(0)}{n_i(0)}$$
17
+
18
+ We can get rid of the nuisance parameter $\phi_s$ (which is difficult to measure becuase
19
+ we don't know the true number of cells for each strain and sample) using the following trick.
20
+
21
+ We have the equation for read counts for mutant $i$ (same as above):
22
+
23
+ $$
24
+ \log \frac{c_i(t)}{c_i(0)} = \log \phi_s + \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)}
25
+ $$
26
+
27
+ And for the reference strain (relative fitness is 1):
28
+
29
+ $$
30
+ \log \frac{c_{wt}(t)}{c_{wt}(0)} = \log \phi_s + \log \frac{n_{wt}(t)}{n_{wt}(0)}
31
+ $$
32
+
33
+ We can make $\phi_s$ disappear by taking the difference:
34
+
35
+ $$
36
+ \log \frac{c_i(t)}{c_i(0)} - \log \frac{c_{wt}(t)}{c_{wt}(0)} = \frac{w_i}{w_{wt}} \log \frac{n_{wt}(t)}{n_{wt}(0)} - \log \frac{n_{wt}(t)}{n_{wt}(0)}
37
+ $$
38
+
39
+ This is equivalent to:
40
+
41
+ $$
42
+ \log \left( \frac{c_i(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_i(0)} \right) = \left(\frac{w_i}{w_{wt}} - 1 \right) \log \frac{n_{wt}(t)}{n_{wt}(0)}
43
+ $$
44
+
45
+ So the ratio of _the count ratio of a strain to the reference strain at time t_ to
46
+ _the count ratio of a strain to the reference strain at time 0_ is
47
+ dependent only on the relative fitness and the true fold-expansion of the reference strain.
48
+
49
+ Plotting the ratio of _the count ratio of a strain to the reference strain at time t_ to
50
+ _the count ratio of a strain to the reference strain at time 0_
51
+ should give a straight line (on a log-log) plot, with intercept 0 and gradient equal to the relative fitness minus 1.
sources/read-counts-intro.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Read counts from next-generation sequencing
2
+
3
+ But we don't actually measure the number of cells directly. Instead, we're measuring the
4
+ number of reads (or UMIs) which represent a random sampling of the population followed by
5
+ molecular biology handling and uneven sequencing per lane which decouples the relative
6
+ abundances for each timepoint.
7
+
8
+ Below, you can simulate read counts for technical replicates of the growth curves above.
9
+ The simulation:
10
+
11
+ 1. Randomly samples a defined fraction of the cell population (without replacement, i.e.
12
+ the [Hypergeometric distribution](https://en.wikipedia.org/wiki/Hypergeometric_distribution)).
13
+ Smaller samples from smaller populations are noisier.
14
+ 2. Calculates the resulting proportional representation of every strain in every sample.
15
+ 3. Multiplies that proportion by read depth.
16
+ 4. Randomly samples sequencing read counts resulting from variations in library construction
17
+ and other stochasticity, according to the
18
+ [Negative Binomial distribution](https://en.wikipedia.org/wiki/Negative_binomial_distribution),
19
+ an established noise model for sequencing counts.
sources/read-counts-spike.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Using spike-in counts
2
+
3
+ But we don't actually know the true fold-expansion of the reference strain, since
4
+ it's not directly observed. However, a non-growing fitness-zero control can help,
5
+ such as a heat-killed strain or a spike-in plasmid.
6
+
7
+ We start with the equation before,
8
+
9
+ $$
10
+ \log \left( \frac{c_i(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_i(0)} \right) = \left(\frac{w_i}{w_{wt}} - 1 \right) \log \frac{n_{wt}(t)}{n_{wt}(0)}
11
+ $$
12
+
13
+ But for the fitness-zero control, $w_{spike} = 0$, so:
14
+
15
+ $$
16
+ \log \left( \frac{c_{spike}(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_{spike}(0)} \right) = -\log \frac{n_{wt}(t)}{n_{wt}(0)}
17
+ $$
18
+
19
+ This means that, although we don't know how the reference strain grows directly, its
20
+ growth is given from the ratio of the spike counts to the reference counts, normalized
21
+ to the same ratio at time 0.
22
+
23
+ This leaves us with the overall equation:
24
+
25
+ $$
26
+ \log \left( \frac{c_i(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_i(0)} \right) = \left(1 - \frac{w_i}{w_{wt}} \right) \log \left( \frac{c_{spike}(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_{spike}(0)} \right)
27
+ $$
28
+
29
+ If we plot the left hand side against the right, we should get a straight line for
30
+ each strain with intercept zero and gradient $1 - \frac{w_i}{w_{wt}}$.
sources/read-counts-stationary.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ But we don't actually know the true fold-expansion of the reference strain, since
2
+ it's not directly observed.
3
+
4
+ But we _do_ know some things about it. For example, when the pool is far from carrying
5
+ capacity, the fold-expansion will be close to exponential:
6
+
7
+ $$
8
+ \log \frac{n_{wt}(t)}{n_{wt}(0)} = w_{wt} t
9
+ $$
10
+
11
+ And at the carrying capacity, the fold-expansion stops changing with time, arrested
12
+ at the carrying capacity minus the other cells in the pool:
13
+
14
+ $$
15
+ \log \frac{n_{wt}(t)}{n_{wt}(0)} = \log \frac{K - \Sigma_j n_j}{n_{wt}(0)}
16
+ $$
17
+
18
+ So at very early timepoints, long before carrying capacity is reached,
19
+
20
+ $$
21
+ \log \left( \frac{c_i(t)}{c_{wt}(t)}\frac{c_{wt}(0)}{c_i(0)} \right) = \left(\frac{w_i}{w_{wt}} - 1 \right) w_{wt} t
22
+ $$
23
+
24
+ or equivalently,
25
+
26
+ $$
27
+ \log \frac{c_i(t)}{c_{wt}(t)} = \log \frac{c_i(0)}{c_{wt}(0)} + (w_i - w_{wt}) t
28
+ $$
29
+
30
+ So at early timepoints, the log-ratio of a strain's counts to reference counts increases linearly
31
+ over time with the fitness difference between the strain and the reference. The fitness difference
32
+ is useful, but the ratio would be better. (Alternatively, we could use a known value of the reference
33
+ fitness measured separately).
34
+
35
+ And after carrying capacity is reached,
36
+
37
+ $$
38
+ \log \frac{c_i(t)}{c_{wt}(t)} = \log \frac{c_i(0)}{c_{wt}(0)} + \left(\frac{w_i}{w_{wt}} - 1 \right) \log \frac{K - \Sigma_j n_j}{n_{wt}(0)}
39
+ $$
40
+
41
+ So in this regime, the log-ratio of a strain's counts to reference counts is fixed.
42
+ Subtracting the log-ratio of a strain's counts to reference counts in the input leaves:
43
+
44
+ $$
45
+ \log \frac{c_i(t)}{c_{wt}(t)} - \log \frac{c_i(0)}{c_{wt}(0)} = \left(\frac{w_i}{w_{wt}} - 1 \right) \log \frac{K - \Sigma_j n_j}{n_{wt}(0)}
46
+ $$
47
+
48
+ But we still can't get the relative finess without dividing by the constant
49
+
50
+ $$
51
+ \log \frac{K - \Sigma_j n_j}{n_{wt}(0)}
52
+ $$
53
+
54
+ which we don't know directly. However, the final trick is to use a non-growing control, so that
55
+
56
+ $$\frac{w_i}{w_{wt}} = 0$$
57
+
58
+ That means that for this control,
59
+
60
+ $$
61
+ \log \frac{c_i(t)}{c_{wt}(t)} - \log \frac{c_i(0)}{c_{wt}(0)} = - \log \frac{K - \Sigma_j n_j}{n_{wt}(0)}
62
+ $$
63
+
64
+ We can then get the relative fitness ratio for the other strains directly.
65
+