Spaces:
Runtime error
Runtime error
Upload projectors.py with huggingface_hub
Browse files- projectors.py +93 -0
projectors.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Projection layers for multimodal fusion
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from typing import Optional
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class VisionProjector(nn.Module):
|
| 10 |
+
"""Projects vision features to language model embedding space"""
|
| 11 |
+
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
vision_dim: int,
|
| 15 |
+
language_dim: int,
|
| 16 |
+
hidden_dim: Optional[int] = None,
|
| 17 |
+
dropout: float = 0.1
|
| 18 |
+
):
|
| 19 |
+
super().__init__()
|
| 20 |
+
hidden_dim = hidden_dim or language_dim
|
| 21 |
+
|
| 22 |
+
self.projector = nn.Sequential(
|
| 23 |
+
nn.Linear(vision_dim, hidden_dim),
|
| 24 |
+
nn.GELU(),
|
| 25 |
+
nn.Dropout(dropout),
|
| 26 |
+
nn.Linear(hidden_dim, language_dim),
|
| 27 |
+
nn.LayerNorm(language_dim)
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Initialize weights
|
| 31 |
+
self._init_weights()
|
| 32 |
+
|
| 33 |
+
def _init_weights(self):
|
| 34 |
+
"""Initialize projection weights"""
|
| 35 |
+
for module in self.modules():
|
| 36 |
+
if isinstance(module, nn.Linear):
|
| 37 |
+
nn.init.normal_(module.weight, std=0.02)
|
| 38 |
+
if module.bias is not None:
|
| 39 |
+
nn.init.zeros_(module.bias)
|
| 40 |
+
elif isinstance(module, nn.LayerNorm):
|
| 41 |
+
nn.init.ones_(module.weight)
|
| 42 |
+
nn.init.zeros_(module.bias)
|
| 43 |
+
|
| 44 |
+
def forward(self, vision_features: torch.Tensor) -> torch.Tensor:
|
| 45 |
+
"""
|
| 46 |
+
Args:
|
| 47 |
+
vision_features: [batch_size, vision_dim]
|
| 48 |
+
Returns:
|
| 49 |
+
projected_features: [batch_size, language_dim]
|
| 50 |
+
"""
|
| 51 |
+
return self.projector(vision_features)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class AudioProjector(nn.Module):
|
| 55 |
+
"""Projects audio features to language model embedding space"""
|
| 56 |
+
|
| 57 |
+
def __init__(
|
| 58 |
+
self,
|
| 59 |
+
audio_dim: int,
|
| 60 |
+
language_dim: int,
|
| 61 |
+
dropout: float = 0.1
|
| 62 |
+
):
|
| 63 |
+
super().__init__()
|
| 64 |
+
|
| 65 |
+
self.projector = nn.Sequential(
|
| 66 |
+
nn.Linear(audio_dim, language_dim),
|
| 67 |
+
nn.GELU(),
|
| 68 |
+
nn.Dropout(dropout),
|
| 69 |
+
nn.LayerNorm(language_dim)
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Initialize weights
|
| 73 |
+
self._init_weights()
|
| 74 |
+
|
| 75 |
+
def _init_weights(self):
|
| 76 |
+
"""Initialize projection weights"""
|
| 77 |
+
for module in self.modules():
|
| 78 |
+
if isinstance(module, nn.Linear):
|
| 79 |
+
nn.init.normal_(module.weight, std=0.02)
|
| 80 |
+
if module.bias is not None:
|
| 81 |
+
nn.init.zeros_(module.bias)
|
| 82 |
+
elif isinstance(module, nn.LayerNorm):
|
| 83 |
+
nn.init.ones_(module.weight)
|
| 84 |
+
nn.init.zeros_(module.bias)
|
| 85 |
+
|
| 86 |
+
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
| 87 |
+
"""
|
| 88 |
+
Args:
|
| 89 |
+
audio_features: [batch_size, audio_dim]
|
| 90 |
+
Returns:
|
| 91 |
+
projected_features: [batch_size, language_dim]
|
| 92 |
+
"""
|
| 93 |
+
return self.projector(audio_features)
|