import gradio as gr from huggingface_hub import InferenceClient def respond( message, history: list[dict[str, str]], system_message, max_tokens, temperature, top_p, hf_token: gr.OAuthToken, ): """ Generate a response using the Dolphin 2.9.1 Llama 3 70B model """ client = InferenceClient(token=hf_token.token, model="dphn/dolphin-2.9.1-llama-3-70b") # Format the messages according to the ChatML template that Dolphin expects formatted_prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n" # Add history messages for entry in history: if entry["role"] == "user": formatted_prompt += f"<|im_start|>user\n{entry['content']}<|im_end|>\n" elif entry["role"] == "assistant": formatted_prompt += f"<|im_start|>assistant\n{entry['content']}<|im_end|>\n" # Add the current user message formatted_prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" response = "" # Send the formatted prompt to the model for token in client.text_generation( formatted_prompt, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are Dolphin, a helpful AI assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with gr.Blocks() as demo: gr.Markdown("# Dolphin 2.9.1 Llama 3 70B Demo") gr.Markdown("This is a demo of the Dolphin 2.9.1 Llama 3 70B model. Note that this model is uncensored.") gr.Markdown("### Warning:") gr.Markdown("This model is uncensored and may comply with any requests, including unethical ones. Use responsibly.") with gr.Sidebar(): gr.LoginButton() chatbot.render() if __name__ == "__main__": demo.launch()