Update app.py
Browse files
app.py
CHANGED
|
@@ -2,8 +2,6 @@ import streamlit as st
|
|
| 2 |
import requests
|
| 3 |
import os
|
| 4 |
import json
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
|
| 8 |
# Function to call the Together AI model
|
| 9 |
def call_ai_model(all_message):
|
|
@@ -34,33 +32,6 @@ def call_ai_model(all_message):
|
|
| 34 |
|
| 35 |
return response
|
| 36 |
|
| 37 |
-
# Function to get performance data from AI
|
| 38 |
-
def get_performance_data(conditions):
|
| 39 |
-
all_message = (
|
| 40 |
-
f"Provide the expected sports performance score at conditions: "
|
| 41 |
-
f"Temperature {conditions['temperature']}°C, Humidity {conditions['humidity']}%, "
|
| 42 |
-
f"Wind Speed {conditions['wind_speed']} km/h."
|
| 43 |
-
)
|
| 44 |
-
response = call_ai_model(all_message)
|
| 45 |
-
generated_text = ""
|
| 46 |
-
for line in response.iter_lines():
|
| 47 |
-
if line:
|
| 48 |
-
line_content = line.decode('utf-8')
|
| 49 |
-
if line_content.startswith("data: "):
|
| 50 |
-
line_content = line_content[6:] # Strip "data: " prefix
|
| 51 |
-
try:
|
| 52 |
-
json_data = json.loads(line_content)
|
| 53 |
-
if "choices" in json_data:
|
| 54 |
-
delta = json_data["choices"][0]["delta"]
|
| 55 |
-
if "content" in delta:
|
| 56 |
-
generated_text += delta["content"]
|
| 57 |
-
except json.JSONDecodeError:
|
| 58 |
-
continue
|
| 59 |
-
|
| 60 |
-
# Example: Replace with actual data from API
|
| 61 |
-
performance_score = 80 # Replace with actual data from API
|
| 62 |
-
return performance_score
|
| 63 |
-
|
| 64 |
# Streamlit app layout
|
| 65 |
st.title("Climate Impact on Sports Performance")
|
| 66 |
st.write("Analyze and visualize the impact of climate conditions on sports performance.")
|
|
@@ -69,54 +40,37 @@ st.write("Analyze and visualize the impact of climate conditions on sports perfo
|
|
| 69 |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
|
| 70 |
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
|
| 71 |
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# Button to generate predictions
|
| 74 |
if st.button("Generate Prediction"):
|
| 75 |
-
|
| 76 |
-
"
|
| 77 |
-
"humidity
|
| 78 |
-
"
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
try:
|
| 82 |
with st.spinner("Generating predictions..."):
|
| 83 |
# Call AI model to get qualitative analysis
|
| 84 |
qualitative_analysis = (
|
| 85 |
-
f"
|
| 86 |
-
f"Temperature {temperature}°C, Humidity {humidity}%, "
|
| 87 |
-
f"
|
|
|
|
| 88 |
)
|
| 89 |
qualitative_result = call_ai_model(qualitative_analysis)
|
| 90 |
|
| 91 |
-
# Get performance score for specified conditions
|
| 92 |
-
performance_score = get_performance_data(conditions)
|
| 93 |
-
|
| 94 |
st.success("Predictions generated.")
|
| 95 |
|
| 96 |
# Display qualitative analysis
|
| 97 |
st.subheader("Qualitative Analysis")
|
| 98 |
st.write(qualitative_result)
|
| 99 |
|
| 100 |
-
# Display performance score
|
| 101 |
-
st.subheader("Performance Score")
|
| 102 |
-
st.write(f"Predicted Performance Score: {performance_score}")
|
| 103 |
-
|
| 104 |
-
# Plotting the data
|
| 105 |
-
st.subheader("Performance Score vs Climate Conditions")
|
| 106 |
-
|
| 107 |
-
# Define climate conditions for plotting
|
| 108 |
-
climate_conditions = list(conditions.keys())
|
| 109 |
-
climate_values = list(conditions.values())
|
| 110 |
-
|
| 111 |
-
# Plotting performance score against climate conditions
|
| 112 |
-
fig, ax = plt.subplots()
|
| 113 |
-
ax.plot(climate_conditions, climate_values, marker='o', linestyle='-', color='b')
|
| 114 |
-
ax.set_xlabel('Climate Conditions')
|
| 115 |
-
ax.set_ylabel('Value')
|
| 116 |
-
ax.set_title('Performance Score vs Climate Conditions')
|
| 117 |
-
ax.grid(True)
|
| 118 |
-
st.pyplot(fig)
|
| 119 |
-
|
| 120 |
except ValueError as ve:
|
| 121 |
st.error(f"Configuration error: {ve}")
|
| 122 |
except requests.exceptions.RequestException as re:
|
|
|
|
| 2 |
import requests
|
| 3 |
import os
|
| 4 |
import json
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Function to call the Together AI model
|
| 7 |
def call_ai_model(all_message):
|
|
|
|
| 32 |
|
| 33 |
return response
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Streamlit app layout
|
| 36 |
st.title("Climate Impact on Sports Performance")
|
| 37 |
st.write("Analyze and visualize the impact of climate conditions on sports performance.")
|
|
|
|
| 40 |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
|
| 41 |
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
|
| 42 |
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
|
| 43 |
+
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
|
| 44 |
+
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
|
| 45 |
+
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
|
| 46 |
+
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
|
| 47 |
|
| 48 |
# Button to generate predictions
|
| 49 |
if st.button("Generate Prediction"):
|
| 50 |
+
all_message = (
|
| 51 |
+
f"Assess the impact on sports performance based on climate conditions: "
|
| 52 |
+
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, "
|
| 53 |
+
f"UV Index {uv_index}, Air Quality Index {air_quality_index}, "
|
| 54 |
+
f"Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa."
|
| 55 |
+
)
|
| 56 |
|
| 57 |
try:
|
| 58 |
with st.spinner("Generating predictions..."):
|
| 59 |
# Call AI model to get qualitative analysis
|
| 60 |
qualitative_analysis = (
|
| 61 |
+
f"Analyze the impact on sports performance under the following conditions: "
|
| 62 |
+
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, "
|
| 63 |
+
f"UV Index {uv_index}, Air Quality Index {air_quality_index}, "
|
| 64 |
+
f"Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa."
|
| 65 |
)
|
| 66 |
qualitative_result = call_ai_model(qualitative_analysis)
|
| 67 |
|
|
|
|
|
|
|
|
|
|
| 68 |
st.success("Predictions generated.")
|
| 69 |
|
| 70 |
# Display qualitative analysis
|
| 71 |
st.subheader("Qualitative Analysis")
|
| 72 |
st.write(qualitative_result)
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
except ValueError as ve:
|
| 75 |
st.error(f"Configuration error: {ve}")
|
| 76 |
except requests.exceptions.RequestException as re:
|