Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import time | |
| import torch | |
| import gradio as gr | |
| from diffusers import WanPipeline, AutoencoderKLWan | |
| from diffusers.utils import export_to_video | |
| from dfloat11 import DFloat11Model | |
| import spaces | |
| import uuid | |
| # Set environment variables | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1" | |
| # Ensure this runs on CPU or ZeroGPU | |
| def generate_video(prompt, negative_prompt, width, height, num_frames, | |
| guidance_scale, guidance_scale_2, num_inference_steps, fps): | |
| torch.cuda.empty_cache() | |
| start_time = time.time() | |
| # Load model | |
| vae = AutoencoderKLWan.from_pretrained( | |
| "Wan-AI/Wan2.2-T2V-A14B-Diffusers", | |
| subfolder="vae", | |
| torch_dtype=torch.float32 | |
| ) | |
| pipe = WanPipeline.from_pretrained( | |
| "Wan-AI/Wan2.2-T2V-A14B-Diffusers", | |
| vae=vae, | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| # Load DFloat11 optimization layers | |
| DFloat11Model.from_pretrained( | |
| "DFloat11/Wan2.2-T2V-A14B-DF11", | |
| device="cpu", | |
| cpu_offload=True, | |
| bfloat16_model=pipe.transformer, | |
| ) | |
| DFloat11Model.from_pretrained( | |
| "DFloat11/Wan2.2-T2V-A14B-2-DF11", | |
| device="cpu", | |
| cpu_offload=True, | |
| bfloat16_model=pipe.transformer_2, | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| # Run inference | |
| result = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_frames=num_frames, | |
| guidance_scale=guidance_scale, | |
| guidance_scale_2=guidance_scale_2, | |
| num_inference_steps=num_inference_steps, | |
| ).frames[0] | |
| output_path = f"/tmp/video_{uuid.uuid4().hex}.mp4" | |
| export_to_video(result, output_path, fps=fps) | |
| elapsed = time.time() - start_time | |
| print(f"Video generated in {elapsed:.2f} seconds") | |
| return output_path | |
| # Gradio UI | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## 🎥 Wan2.2 Text-to-Video Generator (ZeroGPU Ready)") | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| value="A serene koi pond at night, with glowing lanterns reflecting on the rippling water. Ethereal fireflies dance above as cherry blossoms gently fall.", | |
| lines=3 | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| width = gr.Slider(256, 1280, value=768, step=64, label="Width") | |
| height = gr.Slider(256, 720, value=432, step=64, label="Height") | |
| num_frames = gr.Slider(8, 81, value=40, step=1, label="Number of Frames") | |
| fps = gr.Slider(8, 30, value=16, step=1, label="FPS") | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.1, label="Guidance Scale") | |
| guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.1, label="Guidance Scale 2") | |
| num_inference_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps") | |
| with gr.Row(): | |
| btn = gr.Button("🎬 Generate Video") | |
| output_video = gr.Video(label="Generated Video") | |
| btn.click( | |
| generate_video, | |
| inputs=[prompt, negative_prompt, width, height, num_frames, guidance_scale, guidance_scale_2, num_inference_steps, fps], | |
| outputs=[output_video] | |
| ) | |
| # Launch Gradio app | |
| demo.launch() | |