rahul7star's picture
Create DF.py
09cb5f3 verified
raw
history blame
3.86 kB
import os
import time
import torch
import gradio as gr
from diffusers import WanPipeline, AutoencoderKLWan
from diffusers.utils import export_to_video
from dfloat11 import DFloat11Model
import spaces
import uuid
# Set environment variables
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
# Ensure this runs on CPU or ZeroGPU
@spaces.GPU(enable_queue=True)
def generate_video(prompt, negative_prompt, width, height, num_frames,
guidance_scale, guidance_scale_2, num_inference_steps, fps):
torch.cuda.empty_cache()
start_time = time.time()
# Load model
vae = AutoencoderKLWan.from_pretrained(
"Wan-AI/Wan2.2-T2V-A14B-Diffusers",
subfolder="vae",
torch_dtype=torch.float32
)
pipe = WanPipeline.from_pretrained(
"Wan-AI/Wan2.2-T2V-A14B-Diffusers",
vae=vae,
torch_dtype=torch.bfloat16
)
# Load DFloat11 optimization layers
DFloat11Model.from_pretrained(
"DFloat11/Wan2.2-T2V-A14B-DF11",
device="cpu",
cpu_offload=True,
bfloat16_model=pipe.transformer,
)
DFloat11Model.from_pretrained(
"DFloat11/Wan2.2-T2V-A14B-2-DF11",
device="cpu",
cpu_offload=True,
bfloat16_model=pipe.transformer_2,
)
pipe.enable_model_cpu_offload()
# Run inference
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=num_frames,
guidance_scale=guidance_scale,
guidance_scale_2=guidance_scale_2,
num_inference_steps=num_inference_steps,
).frames[0]
output_path = f"/tmp/video_{uuid.uuid4().hex}.mp4"
export_to_video(result, output_path, fps=fps)
elapsed = time.time() - start_time
print(f"Video generated in {elapsed:.2f} seconds")
return output_path
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## 🎥 Wan2.2 Text-to-Video Generator (ZeroGPU Ready)")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
value="A serene koi pond at night, with glowing lanterns reflecting on the rippling water. Ethereal fireflies dance above as cherry blossoms gently fall.",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
lines=3
)
with gr.Row():
width = gr.Slider(256, 1280, value=768, step=64, label="Width")
height = gr.Slider(256, 720, value=432, step=64, label="Height")
num_frames = gr.Slider(8, 81, value=40, step=1, label="Number of Frames")
fps = gr.Slider(8, 30, value=16, step=1, label="FPS")
with gr.Row():
guidance_scale = gr.Slider(1.0, 10.0, value=4.0, step=0.1, label="Guidance Scale")
guidance_scale_2 = gr.Slider(1.0, 10.0, value=3.0, step=0.1, label="Guidance Scale 2")
num_inference_steps = gr.Slider(10, 60, value=40, step=1, label="Inference Steps")
with gr.Row():
btn = gr.Button("🎬 Generate Video")
output_video = gr.Video(label="Generated Video")
btn.click(
generate_video,
inputs=[prompt, negative_prompt, width, height, num_frames, guidance_scale, guidance_scale_2, num_inference_steps, fps],
outputs=[output_video]
)
# Launch Gradio app
demo.launch()