import gradio as gr from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForImageClassification # Load model processor = AutoImageProcessor.from_pretrained("prithivMLmods/Weather-Image-Classification") model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Weather-Image-Classification") # Inference function def classify_weather(image_input): try: # PIL image guaranteed by Gradio inputs = processor(images=[image_input], return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits.squeeze() probs = torch.softmax(logits, dim=-1).tolist() labels = [model.config.id2label[i] for i in range(len(probs))] return dict(zip(labels, probs)) except Exception: return {"Error": 1.0} # Gradio interface iface = gr.Interface( fn=classify_weather, inputs=gr.Image(type="pil"), # ✅ PIL input outputs=gr.Label(num_top_classes=5, label="Weather Condition"), title="Weather Image Classification", description="Upload an image to classify the weather condition (sun, rain, snow, fog, or clouds)." ) if __name__ == "__main__": iface.launch(show_error=True)