Spaces:
Running
Running
liaojiajia
commited on
Commit
·
9ec00c3
1
Parent(s):
5740e03
add mm results
Browse files- app.py +107 -0
- gen_table.py +73 -5
- meta_data.py +18 -1
- preprocess.py +45 -2
- src/detail_math_score.json +1 -1
- src/multi-modal.csv +10 -0
- src/multi_modal_results.csv +10 -0
- src/multi_modal_results.json +86 -0
- src/overall_math_score.json +1 -1
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import abc
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
|
|
|
| 4 |
|
| 5 |
from gen_table import *
|
| 6 |
from meta_data import *
|
|
@@ -242,6 +243,112 @@ with gr.Blocks(title="Open Agent Leaderboard") as demo:
|
|
| 242 |
outputs=data_component
|
| 243 |
)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
with gr.Row():
|
| 247 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
|
| 1 |
import abc
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
+
import pandas as pd
|
| 5 |
|
| 6 |
from gen_table import *
|
| 7 |
from meta_data import *
|
|
|
|
| 243 |
outputs=data_component
|
| 244 |
)
|
| 245 |
|
| 246 |
+
with gr.Tab(label='🏅 Open Agent Multi-Modal Leaderboard'):
|
| 247 |
+
gr.Markdown(LEADERBOARD_MD['MULTI_MODAL_MAIN'])
|
| 248 |
+
struct_multi_modal = load_results(MULTIMODAL_SCORE_FILE)
|
| 249 |
+
timestamp = struct_multi_modal['time']
|
| 250 |
+
EVAL_TIME_MM = format_timestamp(timestamp)
|
| 251 |
+
|
| 252 |
+
# Use BUILD_L3_DF to process multi-modal results (pass the list directly)
|
| 253 |
+
table_mm, check_box_mm = BUILD_L3_DF(
|
| 254 |
+
struct_multi_modal['multi_modal_results'], DEFAULT_MULTI_MODAL_BENCH
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Save the complete table as a CSV file
|
| 258 |
+
csv_path_multi_modal = os.path.join(os.getcwd(), 'src/multi_modal_results.csv')
|
| 259 |
+
table_mm.to_csv(csv_path_multi_modal, index=False)
|
| 260 |
+
print(f"Multi-modal results saved to {csv_path_multi_modal}")
|
| 261 |
+
|
| 262 |
+
type_map_mm = check_box_mm['type_map']
|
| 263 |
+
|
| 264 |
+
checkbox_group_mm = gr.CheckboxGroup(
|
| 265 |
+
choices=check_box_mm['all'],
|
| 266 |
+
value=check_box_mm['required'],
|
| 267 |
+
label='Evaluation Dimension',
|
| 268 |
+
interactive=True,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
agent_name_mm = gr.CheckboxGroup(
|
| 272 |
+
choices=table_mm['Agent'].unique().tolist(),
|
| 273 |
+
value=table_mm['Agent'].unique().tolist(),
|
| 274 |
+
label='Agent',
|
| 275 |
+
interactive=True
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
vlm_name_mm = gr.CheckboxGroup(
|
| 279 |
+
choices=table_mm['VLMs'].unique().tolist(),
|
| 280 |
+
value=table_mm['VLMs'].unique().tolist(),
|
| 281 |
+
label='VLMs',
|
| 282 |
+
interactive=True
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
initial_headers_mm = ['Rank'] + check_box_mm['essential'] + checkbox_group_mm.value
|
| 286 |
+
available_headers_mm = [h for h in initial_headers_mm if h in table_mm.columns]
|
| 287 |
+
|
| 288 |
+
data_component_mm = gr.components.DataFrame(
|
| 289 |
+
value=table_mm[available_headers_mm],
|
| 290 |
+
type='pandas',
|
| 291 |
+
datatype=[type_map_mm[x] for x in available_headers_mm],
|
| 292 |
+
interactive=False,
|
| 293 |
+
wrap=True,
|
| 294 |
+
visible=True
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
def filter_df_mm(fields, agents, vlms, *args):
|
| 298 |
+
headers = ['Rank'] + check_box_mm['essential'] + fields
|
| 299 |
+
df = table_mm.copy()
|
| 300 |
+
|
| 301 |
+
# Validate inputs to avoid errors
|
| 302 |
+
if not agents:
|
| 303 |
+
agents = df['Agent'].unique().tolist()
|
| 304 |
+
if not vlms:
|
| 305 |
+
vlms = df['VLMs'].unique().tolist()
|
| 306 |
+
|
| 307 |
+
# Add filtering logic
|
| 308 |
+
df['flag'] = df.apply(lambda row: (
|
| 309 |
+
row['Agent'] in agents and
|
| 310 |
+
row['VLMs'] in vlms
|
| 311 |
+
), axis=1)
|
| 312 |
+
|
| 313 |
+
df = df[df['flag']].copy()
|
| 314 |
+
df.pop('flag')
|
| 315 |
+
|
| 316 |
+
# Ensure all requested columns exist
|
| 317 |
+
available_headers = [h for h in headers if h in df.columns]
|
| 318 |
+
|
| 319 |
+
# If no columns are available, return an empty DataFrame with basic columns
|
| 320 |
+
if not available_headers:
|
| 321 |
+
available_headers = ['Rank'] + check_box_mm['essential']
|
| 322 |
+
|
| 323 |
+
comp = gr.components.DataFrame(
|
| 324 |
+
value=df[available_headers],
|
| 325 |
+
type='pandas',
|
| 326 |
+
datatype=[type_map_mm.get(col, 'str') for col in available_headers],
|
| 327 |
+
interactive=False,
|
| 328 |
+
wrap=True,
|
| 329 |
+
visible=True
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
return comp
|
| 333 |
+
|
| 334 |
+
# Add change events for multi-modal leaderboard
|
| 335 |
+
checkbox_group_mm.change(
|
| 336 |
+
fn=filter_df_mm,
|
| 337 |
+
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
|
| 338 |
+
outputs=data_component_mm
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
agent_name_mm.change(
|
| 342 |
+
fn=filter_df_mm,
|
| 343 |
+
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
|
| 344 |
+
outputs=data_component_mm
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
vlm_name_mm.change(
|
| 348 |
+
fn=filter_df_mm,
|
| 349 |
+
inputs=[checkbox_group_mm, agent_name_mm, vlm_name_mm],
|
| 350 |
+
outputs=data_component_mm
|
| 351 |
+
)
|
| 352 |
|
| 353 |
with gr.Row():
|
| 354 |
with gr.Accordion("📙 Citation", open=False):
|
gen_table.py
CHANGED
|
@@ -97,14 +97,14 @@ def BUILD_L2_DF(results, fields):
|
|
| 97 |
# Create DataFrame
|
| 98 |
df = pd.DataFrame(res)
|
| 99 |
|
| 100 |
-
#
|
| 101 |
unique_algorithms = df['Algorithm'].unique().tolist()
|
| 102 |
unique_llms = df['LLM'].unique().tolist()
|
| 103 |
|
| 104 |
# Set checkbox configuration
|
| 105 |
check_box = {}
|
| 106 |
-
check_box['Algorithm_options'] = unique_algorithms #
|
| 107 |
-
check_box['LLM_options'] = unique_llms #
|
| 108 |
|
| 109 |
# Sort by Dataset and Score in descending order
|
| 110 |
df = df.sort_values(['Dataset', 'Score'], ascending=[True, False])
|
|
@@ -183,7 +183,7 @@ def generate_table(results, fields):
|
|
| 183 |
df = pd.concat([valid, missing])
|
| 184 |
df = df.sort_values('Rank')
|
| 185 |
|
| 186 |
-
#
|
| 187 |
columns = ['Rank', 'Algorithm', 'LLM', 'Eval Date', 'Avg Score']
|
| 188 |
for d in fields:
|
| 189 |
columns.extend([f"{d}-Score", f"{d}-Cost($)"])
|
|
@@ -238,4 +238,72 @@ def generate_table_detail(results, fields):
|
|
| 238 |
remaining_columns = [col for col in df.columns if col not in columns]
|
| 239 |
df = df[columns + remaining_columns]
|
| 240 |
|
| 241 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
# Create DataFrame
|
| 98 |
df = pd.DataFrame(res)
|
| 99 |
|
| 100 |
+
# Get all unique Algorithms and LLM
|
| 101 |
unique_algorithms = df['Algorithm'].unique().tolist()
|
| 102 |
unique_llms = df['LLM'].unique().tolist()
|
| 103 |
|
| 104 |
# Set checkbox configuration
|
| 105 |
check_box = {}
|
| 106 |
+
check_box['Algorithm_options'] = unique_algorithms # Add Algorithm Options
|
| 107 |
+
check_box['LLM_options'] = unique_llms # Add LLM option
|
| 108 |
|
| 109 |
# Sort by Dataset and Score in descending order
|
| 110 |
df = df.sort_values(['Dataset', 'Score'], ascending=[True, False])
|
|
|
|
| 183 |
df = pd.concat([valid, missing])
|
| 184 |
df = df.sort_values('Rank')
|
| 185 |
|
| 186 |
+
# Rearrange column order
|
| 187 |
columns = ['Rank', 'Algorithm', 'LLM', 'Eval Date', 'Avg Score']
|
| 188 |
for d in fields:
|
| 189 |
columns.extend([f"{d}-Score", f"{d}-Cost($)"])
|
|
|
|
| 238 |
remaining_columns = [col for col in df.columns if col not in columns]
|
| 239 |
df = df[columns + remaining_columns]
|
| 240 |
|
| 241 |
+
return df
|
| 242 |
+
|
| 243 |
+
def generate_multi_modal_table(results, fields):
|
| 244 |
+
res = defaultdict(list)
|
| 245 |
+
for entry in results.values():
|
| 246 |
+
# Add Agent and VLMs
|
| 247 |
+
res['Agent'].append(entry.get('Agent', 'Unknown'))
|
| 248 |
+
res['VLMs'].append(entry.get('VLMs', 'Unknown'))
|
| 249 |
+
|
| 250 |
+
# Add numeric fields
|
| 251 |
+
for field in fields:
|
| 252 |
+
res[field].append(entry.get(field, None))
|
| 253 |
+
|
| 254 |
+
# Create DataFrame
|
| 255 |
+
df = pd.DataFrame(res)
|
| 256 |
+
|
| 257 |
+
# Sort by Score in descending order
|
| 258 |
+
df = df.sort_values('Score', ascending=False)
|
| 259 |
+
|
| 260 |
+
# Add Rank column
|
| 261 |
+
df['Rank'] = range(1, len(df) + 1)
|
| 262 |
+
|
| 263 |
+
# Rearrange column order
|
| 264 |
+
columns = ['Rank', 'Agent', 'VLMs'] + fields
|
| 265 |
+
df = df[columns]
|
| 266 |
+
|
| 267 |
+
return df
|
| 268 |
+
|
| 269 |
+
def BUILD_L3_DF(results, fields):
|
| 270 |
+
res = defaultdict(list)
|
| 271 |
+
|
| 272 |
+
# Iterate over each entry in the multi-modal results (results is a list)
|
| 273 |
+
for entry in results:
|
| 274 |
+
# Add Agent and VLMs
|
| 275 |
+
res['Agent'].append(entry.get('Agent', 'Unknown'))
|
| 276 |
+
res['VLMs'].append(entry.get('VLMs', 'Unknown'))
|
| 277 |
+
|
| 278 |
+
# Add numeric fields
|
| 279 |
+
for field in fields:
|
| 280 |
+
res[field].append(entry.get(field, None))
|
| 281 |
+
|
| 282 |
+
# Create DataFrame
|
| 283 |
+
df = pd.DataFrame(res)
|
| 284 |
+
|
| 285 |
+
# Sort by Score in descending order
|
| 286 |
+
df = df.sort_values('Score', ascending=False)
|
| 287 |
+
|
| 288 |
+
# Add Rank column
|
| 289 |
+
df['Rank'] = range(1, len(df) + 1)
|
| 290 |
+
|
| 291 |
+
# Rearrange column order
|
| 292 |
+
columns = ['Rank', 'Agent', 'VLMs'] + fields
|
| 293 |
+
df = df[columns]
|
| 294 |
+
|
| 295 |
+
# Set checkbox configuration
|
| 296 |
+
check_box = {}
|
| 297 |
+
check_box['essential'] = ['Agent', 'VLMs']
|
| 298 |
+
check_box['required'] = check_box['essential'] + fields
|
| 299 |
+
check_box['all'] = ['Rank'] + fields
|
| 300 |
+
|
| 301 |
+
type_map = defaultdict(lambda: 'number')
|
| 302 |
+
type_map['Agent'] = 'str'
|
| 303 |
+
type_map['VLMs'] = 'str'
|
| 304 |
+
type_map['Rank'] = 'number'
|
| 305 |
+
for field in fields:
|
| 306 |
+
type_map[field] = 'number'
|
| 307 |
+
check_box['type_map'] = type_map
|
| 308 |
+
|
| 309 |
+
return df, check_box
|
meta_data.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
# CONSTANTS-URL
|
| 2 |
OVERALL_MATH_SCORE_FILE = "src/overall_math_score.json"
|
| 3 |
DETAIL_MATH_SCORE_FILE = "src/detail_math_score.json"
|
|
|
|
| 4 |
|
| 5 |
# CONSTANTS-TEXT
|
| 6 |
LEADERBORAD_INTRODUCTION = """# Open Agent Leaderboard
|
| 7 |
### Welcome to the Open Agent Leaderboard! We share the evaluation results of open agents: CoT, SC-CoT, PoT, ReAct, ToT, etc. The agents are implemented by the OpenSource Framework: [*OmAgent*](https://github.com/om-ai-lab/OmAgent)
|
| 8 |
|
| 9 |
-
We are excited to announce that the paper "Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research" has been accepted to ACL 2025 Systems Demonstration Track! 🎉
|
| 10 |
|
| 11 |
This leaderboard was last updated: {}.
|
| 12 |
|
|
@@ -18,6 +19,9 @@ DEFAULT_MATH_BENCH = [
|
|
| 18 |
'gsm8k', 'AQuA', 'MATH-500',
|
| 19 |
]
|
| 20 |
|
|
|
|
|
|
|
|
|
|
| 21 |
# The README file for each benchmark
|
| 22 |
LEADERBOARD_MD = {}
|
| 23 |
|
|
@@ -69,6 +73,19 @@ LEADERBOARD_MD['MATH_DETAIL'] = f"""
|
|
| 69 |
- ReAct-Pro*: We modified ReAct to ReAct-Pro, following the Reflexion repository. Implementation details can be found in the [*OmAgent*](https://github.com/om-ai-lab/OmAgent) repository.
|
| 70 |
"""
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
META_FIELDS = [
|
| 73 |
'Algorithm', 'LLM', 'Eval Date'
|
| 74 |
]
|
|
|
|
| 1 |
# CONSTANTS-URL
|
| 2 |
OVERALL_MATH_SCORE_FILE = "src/overall_math_score.json"
|
| 3 |
DETAIL_MATH_SCORE_FILE = "src/detail_math_score.json"
|
| 4 |
+
MULTIMODAL_SCORE_FILE = "src/multi_modal_results.json"
|
| 5 |
|
| 6 |
# CONSTANTS-TEXT
|
| 7 |
LEADERBORAD_INTRODUCTION = """# Open Agent Leaderboard
|
| 8 |
### Welcome to the Open Agent Leaderboard! We share the evaluation results of open agents: CoT, SC-CoT, PoT, ReAct, ToT, etc. The agents are implemented by the OpenSource Framework: [*OmAgent*](https://github.com/om-ai-lab/OmAgent)
|
| 9 |
|
| 10 |
+
We are excited to announce that the paper "Unifying Language Agent Algorithms with Graph-based Orchestration Engine for Reproducible Agent Research" has been accepted to ACL 2025 Systems Demonstration Track! [*Paper*](https://arxiv.org/abs/2505.24354) 🎉
|
| 11 |
|
| 12 |
This leaderboard was last updated: {}.
|
| 13 |
|
|
|
|
| 19 |
'gsm8k', 'AQuA', 'MATH-500',
|
| 20 |
]
|
| 21 |
|
| 22 |
+
DEFAULT_MULTI_MODAL_BENCH = ['Score', 'Pass Rate', 'Total Input Tokens', 'Total Output Tokens', 'All Tokens']
|
| 23 |
+
|
| 24 |
+
|
| 25 |
# The README file for each benchmark
|
| 26 |
LEADERBOARD_MD = {}
|
| 27 |
|
|
|
|
| 73 |
- ReAct-Pro*: We modified ReAct to ReAct-Pro, following the Reflexion repository. Implementation details can be found in the [*OmAgent*](https://github.com/om-ai-lab/OmAgent) repository.
|
| 74 |
"""
|
| 75 |
|
| 76 |
+
LEADERBOARD_MD['MULTI_MODAL_MAIN'] = f"""
|
| 77 |
+
## Math task main Evaluation Results
|
| 78 |
+
|
| 79 |
+
- Metrics:
|
| 80 |
+
- Score: The evaluation score on each Benchmarks (the higher the better).
|
| 81 |
+
- Pass rate: The percentage of response that are valid, where a response is valid if it is neither empty nor null.
|
| 82 |
+
|
| 83 |
+
- By default, we present the overall evaluation results based on MME-RealWorld, sorted by the descending order of Score.
|
| 84 |
+
|
| 85 |
+
- IO (Input-Output): The baseline method that directly prompts the model with the question and expects an answer without any intermediate reasoning steps.
|
| 86 |
+
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
META_FIELDS = [
|
| 90 |
'Algorithm', 'LLM', 'Eval Date'
|
| 91 |
]
|
preprocess.py
CHANGED
|
@@ -174,7 +174,50 @@ def process_csv_to_overall_json():
|
|
| 174 |
with open('src/overall_math_score.json', 'w', encoding='utf-8') as f:
|
| 175 |
json.dump(result, f, indent=4, ensure_ascii=False)
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
if __name__ == "__main__":
|
| 178 |
-
# Generate JSON files in
|
| 179 |
process_csv_to_json()
|
| 180 |
-
process_csv_to_overall_json()
|
|
|
|
|
|
| 174 |
with open('src/overall_math_score.json', 'w', encoding='utf-8') as f:
|
| 175 |
json.dump(result, f, indent=4, ensure_ascii=False)
|
| 176 |
|
| 177 |
+
def process_multi_modal_csv():
|
| 178 |
+
# Read the CSV file
|
| 179 |
+
df = pd.read_csv('src/multi-modal.csv', skipinitialspace=True)
|
| 180 |
+
|
| 181 |
+
# Clean and rename columns
|
| 182 |
+
df.columns = df.columns.str.strip().str.replace('="', '').str.replace('"', '')
|
| 183 |
+
df = df.rename(columns={
|
| 184 |
+
'Agent': 'Agent',
|
| 185 |
+
'VLMs': 'VLMs',
|
| 186 |
+
'Score': 'Score',
|
| 187 |
+
'Pass Rate': 'Pass Rate',
|
| 188 |
+
'Total Input Tokens': 'Total Input Tokens',
|
| 189 |
+
'Total Output Tokens': 'Total Output Tokens',
|
| 190 |
+
'All Tokens': 'All Tokens'
|
| 191 |
+
})
|
| 192 |
+
|
| 193 |
+
# Strip unwanted characters from all string values
|
| 194 |
+
df = df.applymap(lambda x: str(x).replace('="', '').replace('"', '').strip() if isinstance(x, str) else x)
|
| 195 |
+
|
| 196 |
+
# Helper function to parse numbers with commas
|
| 197 |
+
def parse_number(value):
|
| 198 |
+
if pd.isna(value) or value == '-':
|
| 199 |
+
return 0
|
| 200 |
+
return int(float(str(value).replace(',', '')))
|
| 201 |
+
|
| 202 |
+
# Process numeric fields
|
| 203 |
+
df['Score'] = df['Score'].apply(lambda x: round(float(x), 2) if pd.notnull(x) and x != '-' else 0.0)
|
| 204 |
+
df['Pass Rate'] = df['Pass Rate'].apply(lambda x: round(float(x) / 100, 4) if pd.notnull(x) and x != '-' else 0.0)
|
| 205 |
+
df['Total Input Tokens'] = df['Total Input Tokens'].apply(parse_number)
|
| 206 |
+
df['Total Output Tokens'] = df['Total Output Tokens'].apply(parse_number)
|
| 207 |
+
df['All Tokens'] = df['All Tokens'].apply(parse_number)
|
| 208 |
+
|
| 209 |
+
# Convert to Hugging Face-compatible format
|
| 210 |
+
result = {
|
| 211 |
+
"time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 212 |
+
"multi_modal_results": df.to_dict(orient='records')
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
# Save as JSON file
|
| 216 |
+
with open('src/multi_modal_results.json', 'w', encoding='utf-8') as f:
|
| 217 |
+
json.dump(result, f, indent=4, ensure_ascii=False)
|
| 218 |
+
|
| 219 |
if __name__ == "__main__":
|
| 220 |
+
# Generate JSON files in three formats
|
| 221 |
process_csv_to_json()
|
| 222 |
+
process_csv_to_overall_json()
|
| 223 |
+
process_multi_modal_csv()
|
src/detail_math_score.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"time": "2025-
|
| 3 |
"results": {
|
| 4 |
"IO": {
|
| 5 |
"gpt-3.5-turbo": {
|
|
|
|
| 1 |
{
|
| 2 |
+
"time": "2025-06-25 18:17:55",
|
| 3 |
"results": {
|
| 4 |
"IO": {
|
| 5 |
"gpt-3.5-turbo": {
|
src/multi-modal.csv
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"=""Agent""","=""VLMs""","=""Score""","=""Pass Rate""","=""Total Input Tokens""","=""Total Output Tokens""","=""All Tokens""
|
| 2 |
+
"=""ZoomEye""","=""Qwen2.5-VL-72B-Instruct""","=""51.56""","=""99.81""","=""76,808,965""","=""1,276,460""","=""78,085,425""
|
| 3 |
+
"=""ZoomEye""","=""Qwen2.5-VL-7B-Instruct""","=""48.06""","=""96.50""","=""94,418,593""","=""1,472,836""","=""95,891,429""
|
| 4 |
+
"=""IO""","=""Qwen2.5-VL-72B-Instruct""","=""44.47""","=""100.00""","=""6,174,490""","=""2,114""","=""6,176,604""
|
| 5 |
+
"=""ZoomEye""","=""InternVL2.5-8B""","=""43.42""","=""99.34""","=""153,857,588""","=""2,017,170""","=""155,874,758""
|
| 6 |
+
"=""IO""","=""InternVL2.5-8B""","=""42.95""","=""100.00""","=""2,779,778""","=""2,335""","=""2,782,113""
|
| 7 |
+
"=""IO""","=""Qwen2.5-VL-7B-Instruct""","=""42.86""","=""100.00""","=""6,174,490""","=""2,114""","=""6,176,604""
|
| 8 |
+
"=""ZoomEye""","=""Llava-v1.5-7B""","=""31.60""","=""98.86""","=""113,073,261""","=""1,368,724""","=""114,441,985""
|
| 9 |
+
"=""IO""","=""Llava-v1.5-7B""","=""24.79""","=""100.00""","=""734,868""","=""17,036""","=""751,904""
|
| 10 |
+
"=""V*""","=""seal_vqa & seal_vsm""","=""15.14""","=""72.37""","=""-""","=""-""","=""-"""
|
src/multi_modal_results.csv
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Rank,Agent,VLMs,Score,Pass Rate,Total Input Tokens,Total Output Tokens,All Tokens
|
| 2 |
+
1,ZoomEye,Qwen2.5-VL-72B-Instruct,51.56,0.9981,76808965,1276460,78085425
|
| 3 |
+
2,ZoomEye,Qwen2.5-VL-7B-Instruct,48.06,0.965,94418593,1472836,95891429
|
| 4 |
+
3,IO,Qwen2.5-VL-72B-Instruct,44.47,1.0,6174490,2114,6176604
|
| 5 |
+
4,ZoomEye,InternVL2.5-8B,43.42,0.9934,153857588,2017170,155874758
|
| 6 |
+
5,IO,InternVL2.5-8B,42.95,1.0,2779778,2335,2782113
|
| 7 |
+
6,IO,Qwen2.5-VL-7B-Instruct,42.86,1.0,6174490,2114,6176604
|
| 8 |
+
7,ZoomEye,Llava-v1.5-7B,31.6,0.9886,113073261,1368724,114441985
|
| 9 |
+
8,IO,Llava-v1.5-7B,24.79,1.0,734868,17036,751904
|
| 10 |
+
9,V*,seal_vqa & seal_vsm,15.14,0.7237,0,0,0
|
src/multi_modal_results.json
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"time": "2025-06-25 18:17:55",
|
| 3 |
+
"multi_modal_results": [
|
| 4 |
+
{
|
| 5 |
+
"Agent": "ZoomEye",
|
| 6 |
+
"VLMs": "Qwen2.5-VL-72B-Instruct",
|
| 7 |
+
"Score": 51.56,
|
| 8 |
+
"Pass Rate": 0.9981,
|
| 9 |
+
"Total Input Tokens": 76808965,
|
| 10 |
+
"Total Output Tokens": 1276460,
|
| 11 |
+
"All Tokens": 78085425
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"Agent": "ZoomEye",
|
| 15 |
+
"VLMs": "Qwen2.5-VL-7B-Instruct",
|
| 16 |
+
"Score": 48.06,
|
| 17 |
+
"Pass Rate": 0.965,
|
| 18 |
+
"Total Input Tokens": 94418593,
|
| 19 |
+
"Total Output Tokens": 1472836,
|
| 20 |
+
"All Tokens": 95891429
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"Agent": "IO",
|
| 24 |
+
"VLMs": "Qwen2.5-VL-72B-Instruct",
|
| 25 |
+
"Score": 44.47,
|
| 26 |
+
"Pass Rate": 1.0,
|
| 27 |
+
"Total Input Tokens": 6174490,
|
| 28 |
+
"Total Output Tokens": 2114,
|
| 29 |
+
"All Tokens": 6176604
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"Agent": "ZoomEye",
|
| 33 |
+
"VLMs": "InternVL2.5-8B",
|
| 34 |
+
"Score": 43.42,
|
| 35 |
+
"Pass Rate": 0.9934,
|
| 36 |
+
"Total Input Tokens": 153857588,
|
| 37 |
+
"Total Output Tokens": 2017170,
|
| 38 |
+
"All Tokens": 155874758
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"Agent": "IO",
|
| 42 |
+
"VLMs": "InternVL2.5-8B",
|
| 43 |
+
"Score": 42.95,
|
| 44 |
+
"Pass Rate": 1.0,
|
| 45 |
+
"Total Input Tokens": 2779778,
|
| 46 |
+
"Total Output Tokens": 2335,
|
| 47 |
+
"All Tokens": 2782113
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"Agent": "IO",
|
| 51 |
+
"VLMs": "Qwen2.5-VL-7B-Instruct",
|
| 52 |
+
"Score": 42.86,
|
| 53 |
+
"Pass Rate": 1.0,
|
| 54 |
+
"Total Input Tokens": 6174490,
|
| 55 |
+
"Total Output Tokens": 2114,
|
| 56 |
+
"All Tokens": 6176604
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"Agent": "ZoomEye",
|
| 60 |
+
"VLMs": "Llava-v1.5-7B",
|
| 61 |
+
"Score": 31.6,
|
| 62 |
+
"Pass Rate": 0.9886,
|
| 63 |
+
"Total Input Tokens": 113073261,
|
| 64 |
+
"Total Output Tokens": 1368724,
|
| 65 |
+
"All Tokens": 114441985
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"Agent": "IO",
|
| 69 |
+
"VLMs": "Llava-v1.5-7B",
|
| 70 |
+
"Score": 24.79,
|
| 71 |
+
"Pass Rate": 1.0,
|
| 72 |
+
"Total Input Tokens": 734868,
|
| 73 |
+
"Total Output Tokens": 17036,
|
| 74 |
+
"All Tokens": 751904
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"Agent": "V*",
|
| 78 |
+
"VLMs": "seal_vqa & seal_vsm",
|
| 79 |
+
"Score": 15.14,
|
| 80 |
+
"Pass Rate": 0.7237,
|
| 81 |
+
"Total Input Tokens": 0,
|
| 82 |
+
"Total Output Tokens": 0,
|
| 83 |
+
"All Tokens": 0
|
| 84 |
+
}
|
| 85 |
+
]
|
| 86 |
+
}
|
src/overall_math_score.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"time": "2025-
|
| 3 |
"results": {
|
| 4 |
"IO": {
|
| 5 |
"META": {
|
|
|
|
| 1 |
{
|
| 2 |
+
"time": "2025-06-25 18:17:55",
|
| 3 |
"results": {
|
| 4 |
"IO": {
|
| 5 |
"META": {
|