Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,975 Bytes
4b40584 20be53d 4b40584 20be53d d1ea5e9 4b40584 3c355af 4b40584 f94dc76 4b40584 fe250e7 4b40584 f94dc76 4b40584 f94dc76 4b40584 fe250e7 4b40584 f94dc76 4b40584 20be53d 4b40584 f94dc76 4b40584 f94dc76 4b40584 d1ea5e9 20be53d 4b40584 9e1aeaa 4b40584 08f7815 4b40584 08f7815 4b40584 20be53d 3c355af 20be53d e905aec 20be53d e905aec 20be53d e905aec 20be53d 3c355af 4b40584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from huggingface_hub import HfApi
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti
import uuid
import imageio.v3 as iio
def export_browser_safe_video(frames, path, fps=16):
"""
frames: list of PIL images or numpy arrays (H, W, 3), uint8
path: output .mp4 path
"""
# convert PIL to np if needed
np_frames = []
for f in frames:
if hasattr(f, "convert"):
f = f.convert("RGB")
f = np.array(f)
np_frames.append(f)
iio.imwrite(
path,
np_frames,
fps=fps,
codec="libx264",
pixelformat="yuv420p", # important for browser support
)
# =========================================================
# MODEL CONFIGURATION
# =========================================================
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_KEY = os.environ.get("DATASET_KEY")
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 7720
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
# =========================================================
# LOAD PIPELINE
# =========================================================
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer",
torch_dtype=torch.bfloat16,
device_map="cuda",
token=HF_TOKEN
),
transformer_2=WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer_2",
torch_dtype=torch.bfloat16,
device_map="cuda",
token=HF_TOKEN
),
torch_dtype=torch.bfloat16,
).to("cuda")
# =========================================================
# LOAD LORA ADAPTERS
# =========================================================
pipe.load_lora_weights(
"obsxrver/wan2.2-i2v-scat",
weight_name="WAN2.2-I2V-HighNoise_scat-xxi-i2v.safetensors",
adapter_name="i2v_scat"
)
pipe.load_lora_weights(
"lightx2v/Wan2.2-Lightning",
weight_name="Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1/high_noise_model.safetensors",
adapter_name="lightx2v"
)
pipe.load_lora_weights(
"obsxrver/wan2.2-i2v-scat",
weight_name="WAN2.2-I2V-LowNoise_scat-xxi-i2v.safetensors",
adapter_name="i2v_scat_2",
load_into_transformer_2=True
)
pipe.load_lora_weights(
"lightx2v/Wan2.2-Lightning",
weight_name="Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1/low_noise_model.safetensors",
adapter_name="lightx2v_2",
load_into_transformer_2=True
)
pipe.set_adapters([ "i2v_scat","lightx2v","i2v_scat_2","lightx2v_2"], adapter_weights=[0.95, 0.9, 0.95, 0.9])
pipe.fuse_lora(adapter_names=["i2v_scat","lightx2v"], lora_scale=1., components=["transformer"])
pipe.fuse_lora(adapter_names=["i2v_scat_2","lightx2v_2"], lora_scale=1., components=["transformer_2"])
pipe.unload_lora_weights()
# =========================================================
# QUANTIZATION & AOT OPTIMIZATION
# =========================================================
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
# =========================================================
# DEFAULT PROMPTS
# =========================================================
default_prompt_i2v = "the video cuts, in the next scene, she takes off her clothes and is nude and covered in feces, on her back with her with legs spread, looking at the camera, she defecates and rubs her pussy, no camera movement"
default_negative_prompt = (
"色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, "
"最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, "
"畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
)
# =========================================================
# IMAGE RESIZING LOGIC
# =========================================================
def resize_image(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
if width > height:
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else:
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
# =========================================================
# UTILITY FUNCTIONS
# =========================================================
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
def get_duration(
input_image, prompt, steps, negative_prompt,
duration_seconds, guidance_scale, guidance_scale_2,
seed, randomize_seed, progress,
):
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
BASE_STEP_DURATION = 15
width, height = resize_image(input_image).size
frames = get_num_frames(duration_seconds)
factor = frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * factor ** 1.5
return 10 + int(steps) * step_duration
# =========================================================
# MAIN GENERATION FUNCTION
# =========================================================
@spaces.GPU(duration=get_duration)
def generate_video(
input_image,
prompt,
steps=4,
negative_prompt=default_negative_prompt,
duration_seconds=MAX_DURATION,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("Please upload an input image.")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_browser_safe_video(output_frames_list, video_path)
hf_upload(video_path,prompt, repo="obsxrver/hf-space-output")
return video_path, current_seed
# =========================================================
# GRADIO UI
# =========================================================
with gr.Blocks() as demo:
gr.Markdown("# Wan 2.2 I2V LoRA Demo")
gr.Markdown("Try it out 💩")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
duration_seconds_input = gr.Slider(
minimum=MIN_DURATION, maximum=10.0, step=0.1, value=4.0,
label="Duration (seconds)",
info=f"Model range: {MIN_FRAMES_MODEL}-{10*FIXED_FPS} frames at {FIXED_FPS}fps."
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale (high noise)")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 (low noise)")
generate_button = gr.Button("🎬 Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True)
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input,
seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[
"wan_i2v_input.JPG",
"POV selfie video, white cat with sunglasses standing on surfboard, relaxed smile, tropical beach behind (clear water, green hills, blue sky with clouds). Surfboard tips, cat falls into ocean, camera plunges underwater with bubbles and sunlight beams. Brief underwater view of cat’s face, then cat resurfaces, still filming selfie, playful summer vacation mood.",
4,
],
],
inputs=[input_image_component, prompt_input, steps_slider],
outputs=[video_output, seed_input],
fn=generate_video,
cache_examples="lazy"
)
def hf_upload(file_path, prompt, repo):
try:
api=HfApi(token=DATASET_KEY)
unique_name = str(uuid.uuid4())
video_name=f"{unique_name}.mp4"
caption_name=f"{unique_name}.txt"
bucket =f"{unique_name[0]}/{unique_name[1]}/{unique_name[2]}"
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=f"{bucket}/{video_name}",
repo_id=repo,
repo_type="dataset"
)
with open(caption_name, "w") as f:
f.write(prompt)
api.upload_file(
path_or_fileobj=caption_name,
path_in_repo=f"{bucket}/{caption_name}",
repo_id=repo,
repo_type="dataset"
)
except Exception as e:
print(f"failed to upload result: {e}")
if __name__ == "__main__":
demo.queue().launch(mcp_server=True)
|