Spaces:
Running
Running
Updated the inference API
Browse filesUpdated the app to provide some limited API calls.
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
""" Simple Chatbot
|
| 2 |
@author: Nigel Gebodh
|
| 3 |
@email: [email protected]
|
| 4 |
-
|
| 5 |
"""
|
| 6 |
import numpy as np
|
| 7 |
import streamlit as st
|
|
@@ -11,14 +10,36 @@ import sys
|
|
| 11 |
from dotenv import load_dotenv, dotenv_values
|
| 12 |
load_dotenv()
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#Comment_test_11_09_2024
|
| 16 |
|
| 17 |
|
| 18 |
|
|
|
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
"Gemma-3-27B-it":{
|
| 23 |
"inf_point":"https://router.huggingface.co/nebius/v1",
|
| 24 |
"link":"google/gemma-3-27b-it-fast",
|
|
@@ -45,6 +66,18 @@ model_links ={
|
|
| 45 |
},
|
| 46 |
}
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
#Pull info about the model to display
|
| 49 |
model_info ={
|
| 50 |
"Mistral-7B":
|
|
@@ -63,6 +96,10 @@ model_info ={
|
|
| 63 |
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
| 64 |
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""",
|
| 65 |
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
"Zephyr-7B":
|
| 67 |
{'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
| 68 |
\nFrom Huggingface: \n\
|
|
@@ -118,6 +155,44 @@ def reset_conversation():
|
|
| 118 |
|
| 119 |
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
# Define the available models
|
| 123 |
models =[key for key in model_links.keys()]
|
|
@@ -129,11 +204,14 @@ selected_model = st.sidebar.selectbox("Select Model", models)
|
|
| 129 |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
|
| 130 |
|
| 131 |
|
|
|
|
| 132 |
#Add reset button to clear conversation
|
| 133 |
-
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button
|
| 134 |
|
|
|
|
| 135 |
|
| 136 |
# Create model description
|
|
|
|
| 137 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
| 138 |
st.sidebar.markdown(model_info[selected_model]['description'])
|
| 139 |
st.sidebar.image(model_info[selected_model]['logo'])
|
|
@@ -149,7 +227,6 @@ if "prev_option" not in st.session_state:
|
|
| 149 |
|
| 150 |
if st.session_state.prev_option != selected_model:
|
| 151 |
st.session_state.messages = []
|
| 152 |
-
# st.write(f"Changed to {selected_model}")
|
| 153 |
st.session_state.prev_option = selected_model
|
| 154 |
reset_conversation()
|
| 155 |
|
|
@@ -161,12 +238,11 @@ repo_id = model_links[selected_model]
|
|
| 161 |
# initialize the client
|
| 162 |
client = OpenAI(
|
| 163 |
base_url=model_links[selected_model]["inf_point"],#"https://api-inference.huggingface.co/v1",
|
| 164 |
-
api_key=os.environ.get('
|
| 165 |
)
|
| 166 |
|
| 167 |
|
| 168 |
st.subheader(f'AI - {selected_model}')
|
| 169 |
-
# st.title(f'ChatBot Using {selected_model}')
|
| 170 |
|
| 171 |
# Set a default model
|
| 172 |
if selected_model not in st.session_state:
|
|
@@ -184,8 +260,9 @@ for message in st.session_state.messages:
|
|
| 184 |
|
| 185 |
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
|
|
|
| 189 |
|
| 190 |
# Display user message in chat message container
|
| 191 |
with st.chat_message("user"):
|
|
@@ -194,38 +271,54 @@ if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
|
|
| 194 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 195 |
|
| 196 |
|
| 197 |
-
# Display assistant response in chat message container
|
| 198 |
-
with st.chat_message("assistant"):
|
| 199 |
-
|
| 200 |
-
try:
|
| 201 |
-
stream = client.chat.completions.create(
|
| 202 |
-
model=model_links[selected_model]["link"],
|
| 203 |
-
messages=[
|
| 204 |
-
{"role": m["role"], "content": m["content"]}
|
| 205 |
-
for m in st.session_state.messages
|
| 206 |
-
],
|
| 207 |
-
temperature=temp_values,#0.5,
|
| 208 |
-
stream=True,
|
| 209 |
-
max_tokens=3000,
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
response = st.write_stream(stream)
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
|
| 229 |
|
| 230 |
|
| 231 |
-
|
|
|
|
| 1 |
""" Simple Chatbot
|
| 2 |
@author: Nigel Gebodh
|
| 3 |
@email: [email protected]
|
|
|
|
| 4 |
"""
|
| 5 |
import numpy as np
|
| 6 |
import streamlit as st
|
|
|
|
| 10 |
from dotenv import load_dotenv, dotenv_values
|
| 11 |
load_dotenv()
|
| 12 |
|
| 13 |
+
#===========================================
|
| 14 |
+
updates = '''
|
| 15 |
+
Updates
|
| 16 |
+
+ 04/20/2025
|
| 17 |
+
- Changed the inference from HF b/c
|
| 18 |
+
API calls are not very limted.
|
| 19 |
+
- Added API call limiting to allow for demoing
|
| 20 |
+
- Added support for adding your own API token.
|
| 21 |
+
|
| 22 |
+
+ 04/16/2025
|
| 23 |
+
- Changed the inference points on HF b/c
|
| 24 |
+
older points no longer supported.
|
| 25 |
+
'''
|
| 26 |
+
#-------------------------------------------
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
|
| 34 |
+
API_CALL_LIMIT = 5 # Define the limit
|
| 35 |
|
| 36 |
+
if 'api_call_count' not in st.session_state:
|
| 37 |
+
st.session_state.api_call_count = 0
|
| 38 |
+
st.session_state.remaining_calls = API_CALL_LIMIT
|
| 39 |
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
model_links_hf ={
|
| 43 |
"Gemma-3-27B-it":{
|
| 44 |
"inf_point":"https://router.huggingface.co/nebius/v1",
|
| 45 |
"link":"google/gemma-3-27b-it-fast",
|
|
|
|
| 66 |
},
|
| 67 |
}
|
| 68 |
|
| 69 |
+
|
| 70 |
+
model_links_groq ={
|
| 71 |
+
"Gemma-2-9B-it":{
|
| 72 |
+
"inf_point":"https://api.groq.com/openai/v1",
|
| 73 |
+
"link":"gemma2-9b-it",
|
| 74 |
+
},
|
| 75 |
+
"Meta-Llama-3.1-8B":{
|
| 76 |
+
"inf_point":"https://api.groq.com/openai/v1",
|
| 77 |
+
"link":"llama-3.1-8b-instant",
|
| 78 |
+
},
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
#Pull info about the model to display
|
| 82 |
model_info ={
|
| 83 |
"Mistral-7B":
|
|
|
|
| 96 |
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
| 97 |
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""",
|
| 98 |
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
|
| 99 |
+
"Gemma-2-9B-it":
|
| 100 |
+
{'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
| 101 |
+
\nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **9 billion parameters.** \n""",
|
| 102 |
+
'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
|
| 103 |
"Zephyr-7B":
|
| 104 |
{'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
|
| 105 |
\nFrom Huggingface: \n\
|
|
|
|
| 155 |
|
| 156 |
|
| 157 |
|
| 158 |
+
# --- Sidebar Setup ---
|
| 159 |
+
st.sidebar.title("Chatbot Settings")
|
| 160 |
+
|
| 161 |
+
#Define model clients
|
| 162 |
+
client_names = ["Provided API Call", "HF-Token"]
|
| 163 |
+
client_select = st.sidebar.selectbox("Select Model Client", client_names)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
if "HF-Token" in client_select:
|
| 171 |
+
try:
|
| 172 |
+
if "API_token" not in st.session_state:
|
| 173 |
+
st.session_state.API_token = None
|
| 174 |
+
|
| 175 |
+
st.session_state.API_token = st.sidebar.text_input("Enter you Hugging Face Access Token", type="password")
|
| 176 |
+
model_links = model_links_hf
|
| 177 |
+
|
| 178 |
+
except Exception as e:
|
| 179 |
+
st.sidebar.error(f"Credentials Error:\n\n {e}")
|
| 180 |
+
|
| 181 |
+
elif "Provided API Call" in client_select:
|
| 182 |
+
try:
|
| 183 |
+
if "API_token" not in st.session_state:
|
| 184 |
+
st.session_state.API_token = None
|
| 185 |
+
|
| 186 |
+
st.session_state.API_token = os.environ.get('GROQ_API_TOKEN')#Should be like os.environ.get('HUGGINGFACE_API_TOKEN')
|
| 187 |
+
|
| 188 |
+
model_links = model_links_groq
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
st.sidebar.error(f"Credentials Error:\n\n {e}")
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
|
| 197 |
# Define the available models
|
| 198 |
models =[key for key in model_links.keys()]
|
|
|
|
| 204 |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
|
| 205 |
|
| 206 |
|
| 207 |
+
|
| 208 |
#Add reset button to clear conversation
|
| 209 |
+
st.sidebar.button('Reset Chat', on_click=reset_conversation, type="primary") #Reset button
|
| 210 |
|
| 211 |
+
st.sidebar.divider() # Add a visual separator
|
| 212 |
|
| 213 |
# Create model description
|
| 214 |
+
st.sidebar.subheader(f"About {selected_model}")
|
| 215 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
| 216 |
st.sidebar.markdown(model_info[selected_model]['description'])
|
| 217 |
st.sidebar.image(model_info[selected_model]['logo'])
|
|
|
|
| 227 |
|
| 228 |
if st.session_state.prev_option != selected_model:
|
| 229 |
st.session_state.messages = []
|
|
|
|
| 230 |
st.session_state.prev_option = selected_model
|
| 231 |
reset_conversation()
|
| 232 |
|
|
|
|
| 238 |
# initialize the client
|
| 239 |
client = OpenAI(
|
| 240 |
base_url=model_links[selected_model]["inf_point"],#"https://api-inference.huggingface.co/v1",
|
| 241 |
+
api_key=st.session_state.API_token#os.environ.get('HUGGINGFACE_API_TOKEN')#"hf_xxx" # Replace with your token
|
| 242 |
)
|
| 243 |
|
| 244 |
|
| 245 |
st.subheader(f'AI - {selected_model}')
|
|
|
|
| 246 |
|
| 247 |
# Set a default model
|
| 248 |
if selected_model not in st.session_state:
|
|
|
|
| 260 |
|
| 261 |
|
| 262 |
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question "):
|
| 266 |
|
| 267 |
# Display user message in chat message container
|
| 268 |
with st.chat_message("user"):
|
|
|
|
| 271 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 272 |
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
if st.session_state.api_call_count >= API_CALL_LIMIT:
|
| 276 |
+
|
| 277 |
+
# Add the warning to the displayed messages, but not to the history sent to the model
|
| 278 |
+
response = f"LIMIT REACHED: Sorry, you have reached the API call limit for this session."
|
| 279 |
+
# st.write(response)
|
| 280 |
+
st.warning(f"Sorry, you have reached the API call limit for this session.")
|
| 281 |
+
st.session_state.messages.append({"role": "assistant", "content": response })
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
else:
|
| 285 |
+
# Display assistant response in chat message container
|
| 286 |
+
with st.chat_message("assistant"):
|
| 287 |
+
try:
|
| 288 |
+
st.session_state.api_call_count += 1
|
| 289 |
+
# Add a spinner for better UX while waiting
|
| 290 |
+
with st.spinner(f"Asking {selected_model}..."):
|
| 291 |
+
|
| 292 |
+
stream = client.chat.completions.create(
|
| 293 |
+
model=model_links[selected_model]["link"],
|
| 294 |
+
messages=[
|
| 295 |
+
{"role": m["role"], "content": m["content"]}
|
| 296 |
+
for m in st.session_state.messages
|
| 297 |
+
],
|
| 298 |
+
temperature=temp_values,#0.5,
|
| 299 |
+
stream=True,
|
| 300 |
+
max_tokens=3000,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
response = st.write_stream(stream)
|
| 304 |
+
|
| 305 |
+
remaining_calls = (API_CALL_LIMIT) - st.session_state.api_call_count
|
| 306 |
+
st.markdown(f"\n\n <span style='float: right; font-size: 0.8em; color: gray;'>API calls:({remaining_calls}/{API_CALL_LIMIT})</span>", unsafe_allow_html=True)
|
| 307 |
+
|
| 308 |
+
except Exception as e:
|
| 309 |
+
response = "šµāš« Looks like someone unplugged something!\
|
| 310 |
+
\n Either the model space is being updated or something is down.\
|
| 311 |
+
\n\
|
| 312 |
+
\n Try again later. \
|
| 313 |
+
\n\
|
| 314 |
+
\n Here's a random pic of a š¶:"
|
| 315 |
+
st.write(response)
|
| 316 |
+
random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))]
|
| 317 |
+
st.image(random_dog_pick)
|
| 318 |
+
st.write("This was the error message:")
|
| 319 |
+
st.write(e)
|
| 320 |
|
| 321 |
|
| 322 |
|
| 323 |
|
| 324 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|