Spaces:
Running
Running
Upload 4 files
Browse files- Dockerfile +25 -0
- README.md +277 -10
- api.py +242 -0
- requirements.txt +9 -0
Dockerfile
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# Install system dependencies
|
| 6 |
+
RUN apt-get update && apt-get install -y \
|
| 7 |
+
build-essential \
|
| 8 |
+
curl \
|
| 9 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
# Copy requirements and install Python dependencies
|
| 12 |
+
COPY requirements.txt .
|
| 13 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 14 |
+
|
| 15 |
+
# Copy application code
|
| 16 |
+
COPY api.py .
|
| 17 |
+
|
| 18 |
+
# Expose port (Hugging Face Spaces uses 7860 by default)
|
| 19 |
+
EXPOSE 7860
|
| 20 |
+
|
| 21 |
+
# Set environment variable for port
|
| 22 |
+
ENV PORT=7860
|
| 23 |
+
|
| 24 |
+
# Run the API server
|
| 25 |
+
CMD ["python", "api.py"]
|
README.md
CHANGED
|
@@ -1,10 +1,277 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Embedding Inference API
|
| 2 |
+
|
| 3 |
+
A FastAPI-based inference service for generating embeddings using JobBERT v2/v3, Jina AI, and Voyage AI.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **Multiple Models**: JobBERT v2/v3 (job-specific), Jina AI v3 (general-purpose), Voyage AI (state-of-the-art)
|
| 8 |
+
- **RESTful API**: Easy-to-use HTTP endpoints
|
| 9 |
+
- **Batch Processing**: Process multiple texts in a single request
|
| 10 |
+
- **Task-Specific Embeddings**: Support for different embedding tasks (retrieval, classification, etc.)
|
| 11 |
+
- **Docker Ready**: Easy deployment to Hugging Face Spaces or any Docker environment
|
| 12 |
+
|
| 13 |
+
## Supported Models
|
| 14 |
+
|
| 15 |
+
| Model | Dimension | Max Tokens | Best For |
|
| 16 |
+
|-------|-----------|------------|----------|
|
| 17 |
+
| JobBERT v2 | 768 | 512 | Job titles and descriptions |
|
| 18 |
+
| JobBERT v3 | 768 | 512 | Job titles (improved performance) |
|
| 19 |
+
| Jina AI v3 | 1024 | 8,192 | General text, long documents |
|
| 20 |
+
| Voyage AI | 1024 | 32,000 | High-quality embeddings (requires API key) |
|
| 21 |
+
|
| 22 |
+
## Quick Start
|
| 23 |
+
|
| 24 |
+
### Local Development
|
| 25 |
+
|
| 26 |
+
1. **Install dependencies:**
|
| 27 |
+
```bash
|
| 28 |
+
cd embedding
|
| 29 |
+
pip install -r requirements.txt
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
2. **Run the API:**
|
| 33 |
+
```bash
|
| 34 |
+
python api.py
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
3. **Access the API:**
|
| 38 |
+
- API: http://localhost:7860
|
| 39 |
+
- Docs: http://localhost:7860/docs
|
| 40 |
+
|
| 41 |
+
### Docker Deployment
|
| 42 |
+
|
| 43 |
+
1. **Build the image:**
|
| 44 |
+
```bash
|
| 45 |
+
docker build -t embedding-api .
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
2. **Run the container:**
|
| 49 |
+
```bash
|
| 50 |
+
docker run -p 7860:7860 embedding-api
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
3. **With Voyage AI (optional):**
|
| 54 |
+
```bash
|
| 55 |
+
docker run -p 7860:7860 -e VOYAGE_API_KEY=your_key_here embedding-api
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## Hugging Face Spaces Deployment
|
| 59 |
+
|
| 60 |
+
### Option 1: Using Hugging Face CLI
|
| 61 |
+
|
| 62 |
+
1. **Install Hugging Face CLI:**
|
| 63 |
+
```bash
|
| 64 |
+
pip install huggingface_hub
|
| 65 |
+
huggingface-cli login
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
2. **Create a new Space:**
|
| 69 |
+
- Go to https://huggingface.co/spaces
|
| 70 |
+
- Click "Create new Space"
|
| 71 |
+
- Choose "Docker" as the Space SDK
|
| 72 |
+
- Name your space (e.g., `your-username/embedding-api`)
|
| 73 |
+
|
| 74 |
+
3. **Clone and push:**
|
| 75 |
+
```bash
|
| 76 |
+
git clone https://huggingface.co/spaces/your-username/embedding-api
|
| 77 |
+
cd embedding-api
|
| 78 |
+
|
| 79 |
+
# Copy files from embedding folder
|
| 80 |
+
cp /path/to/embedding/Dockerfile .
|
| 81 |
+
cp /path/to/embedding/api.py .
|
| 82 |
+
cp /path/to/embedding/requirements.txt .
|
| 83 |
+
cp /path/to/embedding/README.md .
|
| 84 |
+
|
| 85 |
+
git add .
|
| 86 |
+
git commit -m "Initial commit"
|
| 87 |
+
git push
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
4. **Configure environment (optional):**
|
| 91 |
+
- Go to your Space settings
|
| 92 |
+
- Add `VOYAGE_API_KEY` secret if using Voyage AI
|
| 93 |
+
|
| 94 |
+
### Option 2: Manual Upload
|
| 95 |
+
|
| 96 |
+
1. Create a new Docker Space on Hugging Face
|
| 97 |
+
2. Upload these files:
|
| 98 |
+
- `Dockerfile`
|
| 99 |
+
- `api.py`
|
| 100 |
+
- `requirements.txt`
|
| 101 |
+
- `README.md`
|
| 102 |
+
3. Add environment variables in Settings if needed
|
| 103 |
+
|
| 104 |
+
## API Usage
|
| 105 |
+
|
| 106 |
+
### Health Check
|
| 107 |
+
|
| 108 |
+
```bash
|
| 109 |
+
curl http://localhost:7860/health
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
Response:
|
| 113 |
+
```json
|
| 114 |
+
{
|
| 115 |
+
"status": "healthy",
|
| 116 |
+
"models_loaded": ["jobbertv2", "jina"],
|
| 117 |
+
"voyage_available": false
|
| 118 |
+
}
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
### Generate Embeddings
|
| 122 |
+
|
| 123 |
+
#### JobBERT v2 (Job Titles)
|
| 124 |
+
|
| 125 |
+
```bash
|
| 126 |
+
curl -X POST http://localhost:7860/embed \
|
| 127 |
+
-H "Content-Type: application/json" \
|
| 128 |
+
-d '{
|
| 129 |
+
"texts": ["Software Engineer", "Data Scientist", "Product Manager"],
|
| 130 |
+
"model": "jobbertv2"
|
| 131 |
+
}'
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
#### JobBERT v3 (Latest, Recommended)
|
| 135 |
+
|
| 136 |
+
```bash
|
| 137 |
+
curl -X POST http://localhost:7860/embed \
|
| 138 |
+
-H "Content-Type: application/json" \
|
| 139 |
+
-d '{
|
| 140 |
+
"texts": ["Software Engineer", "Data Scientist", "Product Manager"],
|
| 141 |
+
"model": "jobbertv3"
|
| 142 |
+
}'
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
#### Jina AI (with task specification)
|
| 146 |
+
|
| 147 |
+
```bash
|
| 148 |
+
curl -X POST http://localhost:7860/embed \
|
| 149 |
+
-H "Content-Type: application/json" \
|
| 150 |
+
-d '{
|
| 151 |
+
"texts": ["What is machine learning?", "How does AI work?"],
|
| 152 |
+
"model": "jina",
|
| 153 |
+
"task": "retrieval.query"
|
| 154 |
+
}'
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
**Jina AI Tasks:**
|
| 158 |
+
- `retrieval.query`: For search queries
|
| 159 |
+
- `retrieval.passage`: For documents
|
| 160 |
+
- `text-matching`: For similarity (default)
|
| 161 |
+
- `classification`: For classification
|
| 162 |
+
- `separation`: For clustering
|
| 163 |
+
|
| 164 |
+
#### Voyage AI (requires API key)
|
| 165 |
+
|
| 166 |
+
```bash
|
| 167 |
+
curl -X POST http://localhost:7860/embed \
|
| 168 |
+
-H "Content-Type: application/json" \
|
| 169 |
+
-d '{
|
| 170 |
+
"texts": ["This is a document to embed"],
|
| 171 |
+
"model": "voyage",
|
| 172 |
+
"input_type": "document"
|
| 173 |
+
}'
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
**Voyage AI Input Types:**
|
| 177 |
+
- `document`: For documents/passages
|
| 178 |
+
- `query`: For search queries
|
| 179 |
+
|
| 180 |
+
### Response Format
|
| 181 |
+
|
| 182 |
+
```json
|
| 183 |
+
{
|
| 184 |
+
"embeddings": [
|
| 185 |
+
[0.123, -0.456, 0.789, ...],
|
| 186 |
+
[0.234, -0.567, 0.890, ...]
|
| 187 |
+
],
|
| 188 |
+
"model": "jobbertv2",
|
| 189 |
+
"dimension": 768,
|
| 190 |
+
"num_texts": 2
|
| 191 |
+
}
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
### List Available Models
|
| 195 |
+
|
| 196 |
+
```bash
|
| 197 |
+
curl http://localhost:7860/models
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
## Python Client Example
|
| 201 |
+
|
| 202 |
+
```python
|
| 203 |
+
import requests
|
| 204 |
+
|
| 205 |
+
url = "http://localhost:7860/embed"
|
| 206 |
+
|
| 207 |
+
# JobBERT v3 (recommended)
|
| 208 |
+
response = requests.post(url, json={
|
| 209 |
+
"texts": ["Software Engineer", "Data Scientist"],
|
| 210 |
+
"model": "jobbertv3"
|
| 211 |
+
})
|
| 212 |
+
result = response.json()
|
| 213 |
+
embeddings = result["embeddings"]
|
| 214 |
+
print(f"Got {len(embeddings)} embeddings of dimension {result['dimension']}")
|
| 215 |
+
|
| 216 |
+
# JobBERT v2
|
| 217 |
+
response = requests.post(url, json={
|
| 218 |
+
"texts": ["Product Manager"],
|
| 219 |
+
"model": "jobbertv2"
|
| 220 |
+
})
|
| 221 |
+
|
| 222 |
+
# Jina AI with task
|
| 223 |
+
response = requests.post(url, json={
|
| 224 |
+
"texts": ["What is Python?"],
|
| 225 |
+
"model": "jina",
|
| 226 |
+
"task": "retrieval.query"
|
| 227 |
+
})
|
| 228 |
+
|
| 229 |
+
# Voyage AI
|
| 230 |
+
response = requests.post(url, json={
|
| 231 |
+
"texts": ["Document text here"],
|
| 232 |
+
"model": "voyage",
|
| 233 |
+
"input_type": "document"
|
| 234 |
+
})
|
| 235 |
+
```
|
| 236 |
+
|
| 237 |
+
## Environment Variables
|
| 238 |
+
|
| 239 |
+
- `PORT`: Server port (default: 7860)
|
| 240 |
+
- `VOYAGE_API_KEY`: Voyage AI API key (optional, required for Voyage embeddings)
|
| 241 |
+
|
| 242 |
+
## Interactive Documentation
|
| 243 |
+
|
| 244 |
+
Once the API is running, visit:
|
| 245 |
+
- **Swagger UI**: http://localhost:7860/docs
|
| 246 |
+
- **ReDoc**: http://localhost:7860/redoc
|
| 247 |
+
|
| 248 |
+
## Notes
|
| 249 |
+
|
| 250 |
+
- Models are downloaded automatically on first startup (~2-3GB total)
|
| 251 |
+
- Voyage AI requires an API key from https://www.voyageai.com/
|
| 252 |
+
- First request to each model may be slower due to model loading
|
| 253 |
+
- Use batch processing for better performance (send multiple texts at once)
|
| 254 |
+
|
| 255 |
+
## Troubleshooting
|
| 256 |
+
|
| 257 |
+
### Models not loading
|
| 258 |
+
- Check available disk space (need ~3GB)
|
| 259 |
+
- Ensure internet connection for model download
|
| 260 |
+
- Check logs for specific error messages
|
| 261 |
+
|
| 262 |
+
### Voyage AI not working
|
| 263 |
+
- Verify `VOYAGE_API_KEY` is set correctly
|
| 264 |
+
- Check API key has sufficient credits
|
| 265 |
+
- Ensure `voyageai` package is installed
|
| 266 |
+
|
| 267 |
+
### Out of memory
|
| 268 |
+
- Reduce batch size (process fewer texts per request)
|
| 269 |
+
- Use smaller models (JobBERT v2 instead of Jina)
|
| 270 |
+
- Increase container memory limits
|
| 271 |
+
|
| 272 |
+
## License
|
| 273 |
+
|
| 274 |
+
This API uses models with different licenses:
|
| 275 |
+
- JobBERT v2/v3: Apache 2.0
|
| 276 |
+
- Jina AI: Apache 2.0
|
| 277 |
+
- Voyage AI: Subject to Voyage AI terms of service
|
api.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Embedding Inference API
|
| 3 |
+
Supports JobBERT v2, Jina AI, and Voyage AI embeddings
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from fastapi import FastAPI, HTTPException
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from pydantic import BaseModel, Field
|
| 9 |
+
from typing import List, Optional
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
import os
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
app = FastAPI(
|
| 18 |
+
title="Embedding Inference API",
|
| 19 |
+
description="Generate embeddings using JobBERT v2/v3, Jina AI, or Voyage AI",
|
| 20 |
+
version="1.0.0"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
app.add_middleware(
|
| 24 |
+
CORSMiddleware,
|
| 25 |
+
allow_origins=["*"],
|
| 26 |
+
allow_credentials=True,
|
| 27 |
+
allow_methods=["*"],
|
| 28 |
+
allow_headers=["*"],
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
MODELS = {}
|
| 32 |
+
VOYAGE_API_KEY = os.environ.get('VOYAGE_API_KEY', '')
|
| 33 |
+
voyage_client = None
|
| 34 |
+
|
| 35 |
+
if VOYAGE_API_KEY:
|
| 36 |
+
try:
|
| 37 |
+
import voyageai
|
| 38 |
+
voyage_client = voyageai.Client(api_key=VOYAGE_API_KEY)
|
| 39 |
+
logger.info("✓ Voyage AI client initialized")
|
| 40 |
+
except ImportError:
|
| 41 |
+
logger.warning("⚠️ voyageai package not installed")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
logger.warning(f"⚠️ Voyage AI initialization failed: {e}")
|
| 44 |
+
|
| 45 |
+
def load_models():
|
| 46 |
+
"""Load embedding models on startup"""
|
| 47 |
+
try:
|
| 48 |
+
logger.info("Loading JobBERT-v2...")
|
| 49 |
+
MODELS['jobbertv2'] = SentenceTransformer('TechWolf/JobBERT-v2')
|
| 50 |
+
logger.info("✓ JobBERT-v2 loaded")
|
| 51 |
+
|
| 52 |
+
logger.info("Loading JobBERT-v3...")
|
| 53 |
+
MODELS['jobbertv3'] = SentenceTransformer('TechWolf/JobBERT-v3')
|
| 54 |
+
logger.info("✓ JobBERT-v3 loaded")
|
| 55 |
+
|
| 56 |
+
logger.info("Loading Jina AI embeddings-v3...")
|
| 57 |
+
MODELS['jina'] = SentenceTransformer('jinaai/jina-embeddings-v3', trust_remote_code=True)
|
| 58 |
+
logger.info("✓ Jina AI v3 loaded")
|
| 59 |
+
|
| 60 |
+
logger.info("All models loaded successfully!")
|
| 61 |
+
except Exception as e:
|
| 62 |
+
logger.error(f"Error loading models: {e}")
|
| 63 |
+
raise
|
| 64 |
+
|
| 65 |
+
@app.on_event("startup")
|
| 66 |
+
async def startup_event():
|
| 67 |
+
load_models()
|
| 68 |
+
|
| 69 |
+
class EmbeddingRequest(BaseModel):
|
| 70 |
+
texts: List[str] = Field(..., description="List of texts to embed", min_items=1)
|
| 71 |
+
model: str = Field(..., description="Model to use: 'jobbertv2', 'jobbertv3', 'jina', or 'voyage'")
|
| 72 |
+
task: Optional[str] = Field(None, description="Task type for Jina AI: 'retrieval.query', 'retrieval.passage', 'text-matching', etc.")
|
| 73 |
+
input_type: Optional[str] = Field(None, description="Input type for Voyage AI: 'document' or 'query'")
|
| 74 |
+
|
| 75 |
+
class Config:
|
| 76 |
+
schema_extra = {
|
| 77 |
+
"example": {
|
| 78 |
+
"texts": ["Software Engineer", "Data Scientist"],
|
| 79 |
+
"model": "jobbertv3",
|
| 80 |
+
"task": "text-matching"
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
class EmbeddingResponse(BaseModel):
|
| 85 |
+
embeddings: List[List[float]] = Field(..., description="List of embedding vectors")
|
| 86 |
+
model: str = Field(..., description="Model used")
|
| 87 |
+
dimension: int = Field(..., description="Embedding dimension")
|
| 88 |
+
num_texts: int = Field(..., description="Number of texts processed")
|
| 89 |
+
|
| 90 |
+
class HealthResponse(BaseModel):
|
| 91 |
+
status: str
|
| 92 |
+
models_loaded: List[str]
|
| 93 |
+
voyage_available: bool
|
| 94 |
+
|
| 95 |
+
@app.get("/", response_model=dict)
|
| 96 |
+
async def root():
|
| 97 |
+
"""Root endpoint with API information"""
|
| 98 |
+
return {
|
| 99 |
+
"message": "Embedding Inference API",
|
| 100 |
+
"version": "1.0.0",
|
| 101 |
+
"endpoints": {
|
| 102 |
+
"/health": "Health check and available models",
|
| 103 |
+
"/embed": "Generate embeddings (POST)",
|
| 104 |
+
"/docs": "API documentation"
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
@app.get("/health", response_model=HealthResponse)
|
| 109 |
+
async def health():
|
| 110 |
+
"""Health check endpoint"""
|
| 111 |
+
models_loaded = list(MODELS.keys())
|
| 112 |
+
return {
|
| 113 |
+
"status": "healthy",
|
| 114 |
+
"models_loaded": models_loaded,
|
| 115 |
+
"voyage_available": voyage_client is not None
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
@app.post("/embed", response_model=EmbeddingResponse)
|
| 119 |
+
async def create_embeddings(request: EmbeddingRequest):
|
| 120 |
+
"""
|
| 121 |
+
Generate embeddings for input texts
|
| 122 |
+
|
| 123 |
+
**Models:**
|
| 124 |
+
- `jobbertv2`: JobBERT-v2 (768-dim, job-specific)
|
| 125 |
+
- `jobbertv3`: JobBERT-v3 (768-dim, job-specific, improved performance)
|
| 126 |
+
- `jina`: Jina AI embeddings-v3 (1024-dim, general purpose, supports task types)
|
| 127 |
+
- `voyage`: Voyage AI (1024-dim, requires API key)
|
| 128 |
+
|
| 129 |
+
**Jina AI Tasks:**
|
| 130 |
+
- `retrieval.query`: For search queries
|
| 131 |
+
- `retrieval.passage`: For documents/passages
|
| 132 |
+
- `text-matching`: For similarity matching (default)
|
| 133 |
+
- `classification`: For classification tasks
|
| 134 |
+
- `separation`: For clustering
|
| 135 |
+
|
| 136 |
+
**Voyage AI Input Types:**
|
| 137 |
+
- `document`: For documents/passages
|
| 138 |
+
- `query`: For search queries
|
| 139 |
+
"""
|
| 140 |
+
model_name = request.model.lower()
|
| 141 |
+
|
| 142 |
+
if model_name == "voyage":
|
| 143 |
+
if not voyage_client:
|
| 144 |
+
raise HTTPException(
|
| 145 |
+
status_code=503,
|
| 146 |
+
detail="Voyage AI not available. Set VOYAGE_API_KEY environment variable."
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
input_type = request.input_type or "document"
|
| 151 |
+
result = voyage_client.embed(
|
| 152 |
+
texts=request.texts,
|
| 153 |
+
model="voyage-3",
|
| 154 |
+
input_type=input_type
|
| 155 |
+
)
|
| 156 |
+
embeddings = result.embeddings
|
| 157 |
+
dimension = len(embeddings[0]) if embeddings else 0
|
| 158 |
+
|
| 159 |
+
return EmbeddingResponse(
|
| 160 |
+
embeddings=embeddings,
|
| 161 |
+
model="voyage-3",
|
| 162 |
+
dimension=dimension,
|
| 163 |
+
num_texts=len(request.texts)
|
| 164 |
+
)
|
| 165 |
+
except Exception as e:
|
| 166 |
+
raise HTTPException(status_code=500, detail=f"Voyage AI error: {str(e)}")
|
| 167 |
+
|
| 168 |
+
elif model_name in MODELS:
|
| 169 |
+
try:
|
| 170 |
+
model = MODELS[model_name]
|
| 171 |
+
|
| 172 |
+
if model_name == "jina" and request.task:
|
| 173 |
+
embeddings = model.encode(
|
| 174 |
+
request.texts,
|
| 175 |
+
task=request.task,
|
| 176 |
+
convert_to_numpy=True
|
| 177 |
+
)
|
| 178 |
+
else:
|
| 179 |
+
embeddings = model.encode(
|
| 180 |
+
request.texts,
|
| 181 |
+
convert_to_numpy=True
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
embeddings_list = embeddings.tolist()
|
| 185 |
+
dimension = len(embeddings_list[0]) if embeddings_list else 0
|
| 186 |
+
|
| 187 |
+
return EmbeddingResponse(
|
| 188 |
+
embeddings=embeddings_list,
|
| 189 |
+
model=model_name,
|
| 190 |
+
dimension=dimension,
|
| 191 |
+
num_texts=len(request.texts)
|
| 192 |
+
)
|
| 193 |
+
except Exception as e:
|
| 194 |
+
raise HTTPException(status_code=500, detail=f"Model error: {str(e)}")
|
| 195 |
+
|
| 196 |
+
else:
|
| 197 |
+
raise HTTPException(
|
| 198 |
+
status_code=400,
|
| 199 |
+
detail=f"Invalid model '{model_name}'. Choose from: jobbertv2, jobbertv3, jina, voyage"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
@app.get("/models")
|
| 203 |
+
async def list_models():
|
| 204 |
+
"""List available models and their specifications"""
|
| 205 |
+
models_info = {
|
| 206 |
+
"jobbertv2": {
|
| 207 |
+
"name": "TechWolf/JobBERT-v2",
|
| 208 |
+
"dimension": 768,
|
| 209 |
+
"description": "Job-specific BERT model fine-tuned on job titles",
|
| 210 |
+
"max_tokens": 512,
|
| 211 |
+
"available": "jobbertv2" in MODELS
|
| 212 |
+
},
|
| 213 |
+
"jobbertv3": {
|
| 214 |
+
"name": "TechWolf/JobBERT-v3",
|
| 215 |
+
"dimension": 768,
|
| 216 |
+
"description": "Latest JobBERT model with improved performance",
|
| 217 |
+
"max_tokens": 512,
|
| 218 |
+
"available": "jobbertv3" in MODELS
|
| 219 |
+
},
|
| 220 |
+
"jina": {
|
| 221 |
+
"name": "jinaai/jina-embeddings-v3",
|
| 222 |
+
"dimension": 1024,
|
| 223 |
+
"description": "General-purpose embeddings with long context support",
|
| 224 |
+
"max_tokens": 8192,
|
| 225 |
+
"available": "jina" in MODELS,
|
| 226 |
+
"tasks": ["retrieval.query", "retrieval.passage", "text-matching", "classification", "separation"]
|
| 227 |
+
},
|
| 228 |
+
"voyage": {
|
| 229 |
+
"name": "voyage-3",
|
| 230 |
+
"dimension": 1024,
|
| 231 |
+
"description": "State-of-the-art embeddings (requires API key)",
|
| 232 |
+
"max_tokens": 32000,
|
| 233 |
+
"available": voyage_client is not None,
|
| 234 |
+
"input_types": ["document", "query"]
|
| 235 |
+
}
|
| 236 |
+
}
|
| 237 |
+
return models_info
|
| 238 |
+
|
| 239 |
+
if __name__ == "__main__":
|
| 240 |
+
import uvicorn
|
| 241 |
+
port = int(os.environ.get("PORT", 7860))
|
| 242 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi>=0.104.0
|
| 2 |
+
uvicorn[standard]>=0.24.0
|
| 3 |
+
pydantic>=2.0.0
|
| 4 |
+
sentence-transformers>=3.0.0
|
| 5 |
+
torch>=2.0.0
|
| 6 |
+
transformers>=4.30.0
|
| 7 |
+
numpy<2.0.0
|
| 8 |
+
voyageai>=0.2.0
|
| 9 |
+
einops>=0.6.0
|