Spaces:
Sleeping
Sleeping
Commit
·
a8d912f
1
Parent(s):
81226cb
add argparsing to train.py; add docstrings; adapt Tox21RFClassifier save and load functions
Browse files
data.py
CHANGED
|
@@ -7,7 +7,6 @@ SMILES and target names as keys.
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
import os
|
| 10 |
-
from typing import List
|
| 11 |
|
| 12 |
import numpy as np
|
| 13 |
|
|
@@ -27,8 +26,21 @@ def preprocess_molecules(
|
|
| 27 |
load_scaler_path: str = "",
|
| 28 |
save_ecdf_path: str = "",
|
| 29 |
save_scaler_path: str = "",
|
| 30 |
-
) -> list[int]:
|
| 31 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
assert not (
|
| 33 |
load_ecdf_path and save_ecdf_path
|
| 34 |
), "Cannot pass 'load_ecdf_path' and 'save_ecdf_path' simultaneously"
|
|
@@ -68,12 +80,12 @@ def preprocess_molecules(
|
|
| 68 |
write_pickle(save_ecdf_path, ecdfs)
|
| 69 |
print(f"Saved ECDFs under {save_ecdf_path}")
|
| 70 |
|
| 71 |
-
# Create
|
| 72 |
-
|
| 73 |
print("Created quantiles of RDKit descriptors")
|
| 74 |
|
| 75 |
# Concatenate features
|
| 76 |
-
raw_features = np.concatenate((ecfps,
|
| 77 |
|
| 78 |
if scaler is None:
|
| 79 |
scaler = StandardScaler()
|
|
@@ -90,9 +102,14 @@ def preprocess_molecules(
|
|
| 90 |
return normalized_features, removed_idxs
|
| 91 |
|
| 92 |
|
| 93 |
-
def create_cleaned_mol_objects(smiles:
|
| 94 |
-
"""
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
"""
|
| 97 |
sm = Standardizer(canon_taut=True)
|
| 98 |
|
|
@@ -109,9 +126,14 @@ def create_cleaned_mol_objects(smiles: List[str]) -> List[Mol]:
|
|
| 109 |
return mols, removed_idxs
|
| 110 |
|
| 111 |
|
| 112 |
-
def create_ecfp_fps(mols:
|
| 113 |
-
"""
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
"""
|
| 116 |
ecfps = list()
|
| 117 |
|
|
@@ -127,9 +149,14 @@ def create_ecfp_fps(mols: List[Mol]) -> np.ndarray:
|
|
| 127 |
return np.array(ecfps)
|
| 128 |
|
| 129 |
|
| 130 |
-
def create_rdkit_descriptors(mols:
|
| 131 |
-
"""
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
"""
|
| 134 |
rdkit_descriptors = list()
|
| 135 |
|
|
@@ -145,14 +172,22 @@ def create_rdkit_descriptors(mols: List[Mol]) -> np.ndarray:
|
|
| 145 |
return np.array(rdkit_descriptors)
|
| 146 |
|
| 147 |
|
| 148 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
for column in range(raw_features.shape[1]):
|
| 153 |
raw_values = raw_features[:, column].reshape(-1)
|
| 154 |
ecdf = ecdfs[column]
|
| 155 |
q = ecdf(raw_values)
|
| 156 |
-
|
| 157 |
|
| 158 |
-
return
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
import os
|
|
|
|
| 10 |
|
| 11 |
import numpy as np
|
| 12 |
|
|
|
|
| 26 |
load_scaler_path: str = "",
|
| 27 |
save_ecdf_path: str = "",
|
| 28 |
save_scaler_path: str = "",
|
| 29 |
+
) -> tuple[np.ndarray, list[int]]:
|
| 30 |
+
"""Preprocessing pipeline for a list of molecules.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
smiles_list (list[str]): list of SMILES
|
| 34 |
+
load_ecdf_path (str, optional): Path to load ECDFs from. Defaults to "".
|
| 35 |
+
load_scaler_path (str, optional): Path to load fitted StandardScaler from. Defaults to "".
|
| 36 |
+
save_ecdf_path (str, optional): Path to save calculated ECDFs. Defaults to "".
|
| 37 |
+
save_scaler_path (str, optional): Path to save fitted StandardScaler. Defaults to "".
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
np.ndarray: normalized ECFPs fingerprints and RDKit descriptor quantiles
|
| 41 |
+
list[int]: list of removed indices of molecules that could not be cleaned
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
assert not (
|
| 45 |
load_ecdf_path and save_ecdf_path
|
| 46 |
), "Cannot pass 'load_ecdf_path' and 'save_ecdf_path' simultaneously"
|
|
|
|
| 80 |
write_pickle(save_ecdf_path, ecdfs)
|
| 81 |
print(f"Saved ECDFs under {save_ecdf_path}")
|
| 82 |
|
| 83 |
+
# Create quantiles
|
| 84 |
+
rdkit_descr_quantiles = create_quantiles(rdkit_descrs, ecdfs)
|
| 85 |
print("Created quantiles of RDKit descriptors")
|
| 86 |
|
| 87 |
# Concatenate features
|
| 88 |
+
raw_features = np.concatenate((ecfps, rdkit_descr_quantiles), axis=1)
|
| 89 |
|
| 90 |
if scaler is None:
|
| 91 |
scaler = StandardScaler()
|
|
|
|
| 102 |
return normalized_features, removed_idxs
|
| 103 |
|
| 104 |
|
| 105 |
+
def create_cleaned_mol_objects(smiles: list[str]) -> list[Mol]:
|
| 106 |
+
"""This function creates cleaned RDKit mol objects from a list of SMILES.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
smiles (list[str]): list of SMILES
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
list[Mol]: list of cleaned molecules
|
| 113 |
"""
|
| 114 |
sm = Standardizer(canon_taut=True)
|
| 115 |
|
|
|
|
| 126 |
return mols, removed_idxs
|
| 127 |
|
| 128 |
|
| 129 |
+
def create_ecfp_fps(mols: list[Mol]) -> np.ndarray:
|
| 130 |
+
"""This function ECFP fingerprints for a list of molecules.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
mols (list[Mol]): list of molecules
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
np.ndarray: ECFP fingerprints of molecules
|
| 137 |
"""
|
| 138 |
ecfps = list()
|
| 139 |
|
|
|
|
| 149 |
return np.array(ecfps)
|
| 150 |
|
| 151 |
|
| 152 |
+
def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
|
| 153 |
+
"""This function creates RDKit descriptors for a list of molecules.
|
| 154 |
+
|
| 155 |
+
Args:
|
| 156 |
+
mols (list[Mol]): list of molecules
|
| 157 |
+
|
| 158 |
+
Returns:
|
| 159 |
+
np.ndarray: RDKit descriptors of molecules
|
| 160 |
"""
|
| 161 |
rdkit_descriptors = list()
|
| 162 |
|
|
|
|
| 172 |
return np.array(rdkit_descriptors)
|
| 173 |
|
| 174 |
|
| 175 |
+
def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
|
| 176 |
+
"""Create quantile values for given features using the columns
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
raw_features (np.ndarray): values to put into quantiles
|
| 180 |
+
ecdfs (list): ECDFs to use
|
| 181 |
|
| 182 |
+
Returns:
|
| 183 |
+
np.ndarray: computed quantiles
|
| 184 |
+
"""
|
| 185 |
+
quantiles = np.zeros_like(raw_features)
|
| 186 |
|
| 187 |
for column in range(raw_features.shape[1]):
|
| 188 |
raw_values = raw_features[:, column].reshape(-1)
|
| 189 |
ecdf = ecdfs[column]
|
| 190 |
q = ecdf(raw_values)
|
| 191 |
+
quantiles[:, column] = q
|
| 192 |
|
| 193 |
+
return quantiles
|
model.py
CHANGED
|
@@ -17,43 +17,59 @@ from utils import TASKS
|
|
| 17 |
|
| 18 |
# ---------------------------------------------------------------------------------------
|
| 19 |
class Tox21RFClassifier:
|
| 20 |
-
"""
|
| 21 |
-
A random forest classifier that assigns a toxicity score to a given SMILES string.
|
| 22 |
-
"""
|
| 23 |
|
| 24 |
def __init__(self, seed: int = 42):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
self.tasks = TASKS
|
| 26 |
self.model = {
|
| 27 |
task: RandomForestClassifier(n_estimators=1001, random_state=seed)
|
| 28 |
for task in self.tasks
|
| 29 |
}
|
| 30 |
|
| 31 |
-
def load_model(self,
|
| 32 |
-
"""
|
| 33 |
-
Loads the model from a given model checkpoint
|
| 34 |
-
"""
|
| 35 |
-
self.model = {
|
| 36 |
-
task: joblib.load(os.path.join(folder, f"rf_{task}.joblib"))
|
| 37 |
-
for task in self.tasks
|
| 38 |
-
}
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
"""
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"""
|
| 44 |
-
if not os.path.exists(
|
| 45 |
-
os.makedirs(
|
| 46 |
|
| 47 |
-
|
| 48 |
-
joblib.dump(model, os.path.join(folder, f"rf_{task}.joblib"))
|
| 49 |
|
| 50 |
def fit(self, task: str, input_features: np.ndarray, labels: np.ndarray) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
assert task in self.tasks, f"Unknown task: {task}"
|
| 52 |
self.model[task].fit(input_features, labels)
|
| 53 |
|
| 54 |
-
def predict(self, task: str, features: np.ndarray) ->
|
| 55 |
-
"""
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"""
|
| 58 |
assert task in self.tasks, f"Unknown task: {task}"
|
| 59 |
preds = self.model[task].predict_proba(features)
|
|
|
|
| 17 |
|
| 18 |
# ---------------------------------------------------------------------------------------
|
| 19 |
class Tox21RFClassifier:
|
| 20 |
+
"""A random forest classifier that assigns a toxicity score to a given SMILES string."""
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def __init__(self, seed: int = 42):
|
| 23 |
+
"""Initialize a random forest classifier for each of the 12 Tox21 tasks.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
seed (int, optional): seed for RF to ensure reproducibility. Defaults to 42.
|
| 27 |
+
"""
|
| 28 |
self.tasks = TASKS
|
| 29 |
self.model = {
|
| 30 |
task: RandomForestClassifier(n_estimators=1001, random_state=seed)
|
| 31 |
for task in self.tasks
|
| 32 |
}
|
| 33 |
|
| 34 |
+
def load_model(self, path: str) -> None:
|
| 35 |
+
"""Loads the model from a given path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
Args:
|
| 38 |
+
path (str): path to model checkpoint
|
| 39 |
"""
|
| 40 |
+
self.model = joblib.load(path)
|
| 41 |
+
|
| 42 |
+
def save_model(self, path: str) -> None:
|
| 43 |
+
"""Saves the model to a given path
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
path (str): path to save model to
|
| 47 |
"""
|
| 48 |
+
if not os.path.exists(os.path.pardir(path)):
|
| 49 |
+
os.makedirs(os.path.pardir(path))
|
| 50 |
|
| 51 |
+
joblib.dump(self.model, path)
|
|
|
|
| 52 |
|
| 53 |
def fit(self, task: str, input_features: np.ndarray, labels: np.ndarray) -> None:
|
| 54 |
+
"""Train the random forest for a given task
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
task (str): task to train
|
| 58 |
+
input_features (np.ndarray): training features
|
| 59 |
+
labels (np.ndarray): training labels
|
| 60 |
+
"""
|
| 61 |
assert task in self.tasks, f"Unknown task: {task}"
|
| 62 |
self.model[task].fit(input_features, labels)
|
| 63 |
|
| 64 |
+
def predict(self, task: str, features: np.ndarray) -> np.ndarray:
|
| 65 |
+
"""Predicts labels for a given Tox21 target using molecule features
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
task (str): the Tox21 target to predict for
|
| 69 |
+
features (np.ndarray): molecule features used for prediction
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
np.ndarray: predicted probability for positive class
|
| 73 |
"""
|
| 74 |
assert task in self.tasks, f"Unknown task: {task}"
|
| 75 |
preds = self.model[task].predict_proba(features)
|
predict.py
CHANGED
|
@@ -6,7 +6,6 @@ SMILES and target names as keys.
|
|
| 6 |
|
| 7 |
# ---------------------------------------------------------------------------------------
|
| 8 |
# Dependencies
|
| 9 |
-
from typing import List
|
| 10 |
from collections import defaultdict
|
| 11 |
|
| 12 |
from data import preprocess_molecules
|
|
@@ -15,9 +14,15 @@ from model import Tox21RFClassifier
|
|
| 15 |
# ---------------------------------------------------------------------------------------
|
| 16 |
|
| 17 |
|
| 18 |
-
def predict(smiles_list:
|
| 19 |
-
"""
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
"""
|
| 22 |
# preprocessing pipeline
|
| 23 |
features, removed_idxs = preprocess_molecules(
|
|
@@ -28,7 +33,7 @@ def predict(smiles_list: List[str]) -> dict:
|
|
| 28 |
|
| 29 |
# setup model
|
| 30 |
model = Tox21RFClassifier(seed=42)
|
| 31 |
-
model.load_model("assets/
|
| 32 |
|
| 33 |
# make predicitons
|
| 34 |
predictions = defaultdict(dict)
|
|
|
|
| 6 |
|
| 7 |
# ---------------------------------------------------------------------------------------
|
| 8 |
# Dependencies
|
|
|
|
| 9 |
from collections import defaultdict
|
| 10 |
|
| 11 |
from data import preprocess_molecules
|
|
|
|
| 14 |
# ---------------------------------------------------------------------------------------
|
| 15 |
|
| 16 |
|
| 17 |
+
def predict(smiles_list: list[str]) -> dict:
|
| 18 |
+
"""Applies the classifier to a list of SMILES strings. Returns prediction=0.0 for
|
| 19 |
+
any molecule that could not be cleaned.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
smiles_list (list[str]): list of SMILES strings
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
dict: nested prediction dictionary, following {'<smiles>': {'<target>': <pred>}}
|
| 26 |
"""
|
| 27 |
# preprocessing pipeline
|
| 28 |
features, removed_idxs = preprocess_molecules(
|
|
|
|
| 33 |
|
| 34 |
# setup model
|
| 35 |
model = Tox21RFClassifier(seed=42)
|
| 36 |
+
model.load_model("assets/rf_alltasks.joblib")
|
| 37 |
|
| 38 |
# make predicitons
|
| 39 |
predictions = defaultdict(dict)
|
train.py
CHANGED
|
@@ -2,6 +2,8 @@
|
|
| 2 |
Script for fitting and saving any preprocessing assets, as well as the fitted RandomForest model
|
| 3 |
"""
|
| 4 |
|
|
|
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
|
| 7 |
from tabulate import tabulate
|
|
@@ -12,9 +14,43 @@ from data import preprocess_molecules
|
|
| 12 |
from model import Tox21RFClassifier
|
| 13 |
from utils import HF_TOKEN
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
def get_sample_mask(removed_idxs: list[int], labels: np.ndarray):
|
| 17 |
-
# mask out NaN labels and labels of removed idxs
|
| 18 |
task_mask = ~np.isnan(labels)
|
| 19 |
removed_mask = np.ones_like(labels, dtype=bool)
|
| 20 |
removed_mask[removed_idxs] = 0
|
|
@@ -25,25 +61,23 @@ def get_sample_mask(removed_idxs: list[int], labels: np.ndarray):
|
|
| 25 |
return feature_mask, label_mask
|
| 26 |
|
| 27 |
|
| 28 |
-
def main():
|
| 29 |
-
# save preprocessing scaler and ecdf distributions
|
| 30 |
-
save_folder = "assets/model/"
|
| 31 |
ds = load_dataset("tschouis/tox21", token=HF_TOKEN)
|
| 32 |
|
| 33 |
print("Preprocess train molecules")
|
| 34 |
train_smiles = list(ds["train"]["smiles"])
|
| 35 |
train_features, train_removed_idxs = preprocess_molecules(
|
| 36 |
train_smiles,
|
| 37 |
-
save_ecdf_path=
|
| 38 |
-
save_scaler_path=
|
| 39 |
)
|
| 40 |
|
| 41 |
print("Preprocess validation molecules")
|
| 42 |
val_smiles = list(ds["validation"]["smiles"])
|
| 43 |
val_features, val_removed_idxs = preprocess_molecules(
|
| 44 |
val_smiles,
|
| 45 |
-
load_ecdf_path=
|
| 46 |
-
load_scaler_path=
|
| 47 |
)
|
| 48 |
|
| 49 |
model = Tox21RFClassifier(seed=42)
|
|
@@ -57,8 +91,8 @@ def main():
|
|
| 57 |
task, train_features[feature_mask], task_labels[label_mask].astype(int)
|
| 58 |
)
|
| 59 |
|
| 60 |
-
print(f"Save model under {
|
| 61 |
-
|
| 62 |
|
| 63 |
print("Evaluate model")
|
| 64 |
results = {}
|
|
@@ -76,4 +110,5 @@ def main():
|
|
| 76 |
|
| 77 |
|
| 78 |
if __name__ == "__main__":
|
| 79 |
-
|
|
|
|
|
|
| 2 |
Script for fitting and saving any preprocessing assets, as well as the fitted RandomForest model
|
| 3 |
"""
|
| 4 |
|
| 5 |
+
import argparse
|
| 6 |
+
|
| 7 |
import numpy as np
|
| 8 |
|
| 9 |
from tabulate import tabulate
|
|
|
|
| 14 |
from model import Tox21RFClassifier
|
| 15 |
from utils import HF_TOKEN
|
| 16 |
|
| 17 |
+
parser = argparse.ArgumentParser(description="RF Trainig script for Tox21 dataset")
|
| 18 |
+
|
| 19 |
+
parser.add_argument(
|
| 20 |
+
"--save_path_model",
|
| 21 |
+
type=str,
|
| 22 |
+
default="assets/rf_alltasks.joblib",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
parser.add_argument(
|
| 26 |
+
"--save_path_ecdfs",
|
| 27 |
+
type=str,
|
| 28 |
+
default="assets/ecdfs.pkl",
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
parser.add_argument(
|
| 32 |
+
"--save_path_scaler",
|
| 33 |
+
type=str,
|
| 34 |
+
default="assets/scaler.pkl",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_sample_mask(
|
| 39 |
+
removed_idxs: list[int], labels: np.ndarray
|
| 40 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
| 41 |
+
"""Returns two masks, one for the samples and one for the labels.
|
| 42 |
+
Filters out any indices removed from the samples and any indices
|
| 43 |
+
where the label is NaN.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
removed_idxs (list[int]): Indices that were removed from the samples
|
| 47 |
+
labels (np.ndarray): list of labels
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
np.ndarray: Feature mask
|
| 51 |
+
np.ndarray: Label mask
|
| 52 |
+
"""
|
| 53 |
|
|
|
|
|
|
|
| 54 |
task_mask = ~np.isnan(labels)
|
| 55 |
removed_mask = np.ones_like(labels, dtype=bool)
|
| 56 |
removed_mask[removed_idxs] = 0
|
|
|
|
| 61 |
return feature_mask, label_mask
|
| 62 |
|
| 63 |
|
| 64 |
+
def main(args):
|
|
|
|
|
|
|
| 65 |
ds = load_dataset("tschouis/tox21", token=HF_TOKEN)
|
| 66 |
|
| 67 |
print("Preprocess train molecules")
|
| 68 |
train_smiles = list(ds["train"]["smiles"])
|
| 69 |
train_features, train_removed_idxs = preprocess_molecules(
|
| 70 |
train_smiles,
|
| 71 |
+
save_ecdf_path=args.save_path_ecdfs,
|
| 72 |
+
save_scaler_path=args.save_path_scaler,
|
| 73 |
)
|
| 74 |
|
| 75 |
print("Preprocess validation molecules")
|
| 76 |
val_smiles = list(ds["validation"]["smiles"])
|
| 77 |
val_features, val_removed_idxs = preprocess_molecules(
|
| 78 |
val_smiles,
|
| 79 |
+
load_ecdf_path=args.save_path_ecdfs,
|
| 80 |
+
load_scaler_path=args.save_path_scaler,
|
| 81 |
)
|
| 82 |
|
| 83 |
model = Tox21RFClassifier(seed=42)
|
|
|
|
| 91 |
task, train_features[feature_mask], task_labels[label_mask].astype(int)
|
| 92 |
)
|
| 93 |
|
| 94 |
+
print(f"Save model under {args.save_path_model}")
|
| 95 |
+
model.save_model(args.save_path_model)
|
| 96 |
|
| 97 |
print("Evaluate model")
|
| 98 |
results = {}
|
|
|
|
| 110 |
|
| 111 |
|
| 112 |
if __name__ == "__main__":
|
| 113 |
+
args = parser.parse_args()
|
| 114 |
+
main(args)
|