mirix commited on
Commit
f0a23be
·
verified ·
1 Parent(s): 1b9f341

Upload 4 files

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. app.py +425 -0
  3. hunting_dates.csv +3 -0
  4. letzhunt.py +1004 -0
  5. requirements.txt +6 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ hunting_dates.csv filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime as dt
2
+ import json
3
+ import os
4
+ import re
5
+ from typing import Any, Dict, List, Optional, Tuple
6
+
7
+ import gpxpy
8
+ import gpxpy.gpx
9
+ import gradio as gr
10
+ import pandas as pd
11
+ import folium
12
+ from shapely.geometry import LineString, Polygon, MultiLineString
13
+ from shapely.ops import unary_union
14
+
15
+ # =======================
16
+ # Data loading & parsing
17
+ # =======================
18
+
19
+ CSV_PATH = "hunting_dates.csv"
20
+ df_raw = pd.read_csv(CSV_PATH)
21
+
22
+ # --- Robust polygon parsing ---
23
+
24
+ def _normalize_polygon_nested(obj: Any) -> List[List[Tuple[float, float]]]:
25
+ """
26
+ Normalize structure into list of rings (each ring = list[(lon, lat)]).
27
+ """
28
+ def is_point(p):
29
+ return (
30
+ isinstance(p, (list, tuple))
31
+ and len(p) >= 2
32
+ and isinstance(p[0], (int, float))
33
+ and isinstance(p[1], (int, float))
34
+ )
35
+
36
+ if isinstance(obj, (list, tuple)) and obj and all(is_point(pt) for pt in obj):
37
+ ring = [(float(pt[0]), float(pt[1])) for pt in obj]
38
+ return [ring]
39
+
40
+ if isinstance(obj, (list, tuple)):
41
+ rings: List[List[Tuple[float, float]]] = []
42
+ if obj and all(isinstance(item, (list, tuple)) for item in obj):
43
+ if any(isinstance(item, (list, tuple)) and item and all(is_point(pt) for pt in item) for item in obj):
44
+ for item in obj:
45
+ if not item:
46
+ continue
47
+ if all(is_point(pt) for pt in item):
48
+ ring = [(float(pt[0]), float(pt[1])) for pt in item]
49
+ rings.append(ring)
50
+ else:
51
+ sub_rings = _normalize_polygon_nested(item)
52
+ rings.extend(sub_rings)
53
+ return rings
54
+
55
+ for child in obj:
56
+ if child is None:
57
+ continue
58
+ sub_rings = _normalize_polygon_nested(child)
59
+ if sub_rings:
60
+ return sub_rings
61
+
62
+ raise ValueError(f"Cannot interpret polygon structure: {obj!r}")
63
+
64
+
65
+ def parse_polygon_str(poly_str: str) -> Polygon:
66
+ if not isinstance(poly_str, str):
67
+ raise ValueError(f"Polygon value is not a string: {poly_str!r}")
68
+
69
+ s = poly_str.strip()
70
+
71
+ parsed = None
72
+ try:
73
+ parsed = json.loads(s)
74
+ except Exception:
75
+ try:
76
+ parsed = eval(s, {"__builtins__": None}, {})
77
+ except Exception as e:
78
+ raise ValueError(f"Failed to parse polygon string: {poly_str!r}") from e
79
+
80
+ rings = _normalize_polygon_nested(parsed)
81
+ if not rings:
82
+ raise ValueError(f"No valid ring found in polygon: {poly_str!r}")
83
+
84
+ shell = rings[0]
85
+ holes = rings[1:] if len(rings) > 1 else None
86
+ return Polygon(shell, holes)
87
+
88
+
89
+ # --- Parse dates column into list of datetime.date ---
90
+
91
+ DATE_RE = re.compile(r"(\d{2}/\d{2}/\d{4}|\d{4}-\d{2}-\d{2})")
92
+
93
+ def parse_dates_field(dates_field: str) -> List[dt.date]:
94
+ if not isinstance(dates_field, str):
95
+ return []
96
+ matches = DATE_RE.findall(dates_field)
97
+ parsed: List[dt.date] = []
98
+ for m in matches:
99
+ if "/" in m:
100
+ d = dt.datetime.strptime(m, "%d/%m/%Y").date()
101
+ else:
102
+ d = dt.datetime.strptime(m, "%Y-%m-%d").date()
103
+ parsed.append(d)
104
+ return sorted(set(parsed))
105
+
106
+
107
+ records: List[Dict] = []
108
+ for _, row in df_raw.iterrows():
109
+ lot = int(row["lot"])
110
+ poly = parse_polygon_str(str(row["polygon"]))
111
+ dates = parse_dates_field(str(row.get("dates", "")))
112
+ records.append(
113
+ {
114
+ "lot": lot,
115
+ "polygon": poly,
116
+ "dates": dates,
117
+ }
118
+ )
119
+
120
+ df = pd.DataFrame(records)
121
+
122
+ all_dates = sorted({d for dates in df["dates"] for d in dates})
123
+ if not all_dates:
124
+ MIN_DATE = MAX_DATE = dt.date.today()
125
+ else:
126
+ MIN_DATE = all_dates[0]
127
+ MAX_DATE = all_dates[-1]
128
+
129
+ lot_dates_map: Dict[int, List[dt.date]] = {
130
+ lot: sorted({d for dates in group["dates"] for d in dates})
131
+ for lot, group in df.groupby("lot")
132
+ }
133
+
134
+ def date_to_str(d: dt.date) -> str:
135
+ return d.strftime("%d/%m/%Y")
136
+
137
+
138
+ # =======================
139
+ # GPX parsing / overlap
140
+ # =======================
141
+
142
+ def parse_gpx_file(file_obj) -> List[LineString]:
143
+ """
144
+ Handles both filepath string and file object.
145
+ """
146
+ path = None
147
+ if isinstance(file_obj, str):
148
+ path = file_obj
149
+ elif hasattr(file_obj, "name"):
150
+ path = file_obj.name
151
+
152
+ if not path or not os.path.exists(path):
153
+ return []
154
+
155
+ with open(path, "r", encoding="utf-8", errors="ignore") as f:
156
+ gpx = gpxpy.parse(f)
157
+
158
+ lines: List[LineString] = []
159
+
160
+ for track in gpx.tracks:
161
+ for segment in track.segments:
162
+ pts = [(p.longitude, p.latitude) for p in segment.points]
163
+ if len(pts) >= 2:
164
+ lines.append(LineString(pts))
165
+
166
+ for route in gpx.routes:
167
+ pts = [(p.longitude, p.latitude) for p in route.points]
168
+ if len(pts) >= 2:
169
+ lines.append(LineString(pts))
170
+
171
+ return lines
172
+
173
+
174
+ def split_line_by_polygons(line: LineString, polys: List[Polygon]) -> Tuple[List[LineString], List[LineString]]:
175
+ if not polys:
176
+ return [], [line]
177
+
178
+ union_poly = unary_union(polys)
179
+ inter = line.intersection(union_poly)
180
+
181
+ intersecting: List[LineString] = []
182
+ non_intersecting: List[LineString] = []
183
+
184
+ def flatten_geom(g, target: List[LineString]):
185
+ if g.is_empty:
186
+ return
187
+ if isinstance(g, LineString):
188
+ target.append(g)
189
+ elif isinstance(g, MultiLineString):
190
+ for part in g.geoms:
191
+ target.append(part)
192
+ else:
193
+ # Handle GeometryCollection or other mixed types if necessary
194
+ try:
195
+ for part in g.geoms:
196
+ flatten_geom(part, target)
197
+ except AttributeError:
198
+ pass
199
+
200
+ flatten_geom(inter, intersecting)
201
+
202
+ diff = line.difference(union_poly)
203
+ flatten_geom(diff, non_intersecting)
204
+
205
+ return intersecting, non_intersecting
206
+
207
+
208
+ # =======================
209
+ # Date helpers
210
+ # =======================
211
+
212
+ def clamp_date(d: dt.date) -> dt.date:
213
+ if d < MIN_DATE:
214
+ return MIN_DATE
215
+ if d > MAX_DATE:
216
+ return MAX_DATE
217
+ return d
218
+
219
+ def default_date() -> dt.date:
220
+ today = dt.date.today()
221
+ return clamp_date(today)
222
+
223
+ def date_to_timestamp(d: dt.date) -> float:
224
+ return dt.datetime(d.year, d.month, d.day, tzinfo=dt.timezone.utc).timestamp()
225
+
226
+ def normalize_selected_ts(ts: Any) -> dt.date:
227
+ if ts is None:
228
+ return default_date()
229
+ try:
230
+ t = float(ts)
231
+ d = dt.datetime.fromtimestamp(t, tz=dt.timezone.utc).date()
232
+ except Exception:
233
+ return default_date()
234
+ return clamp_date(d)
235
+
236
+
237
+ # =======================
238
+ # Map rendering (Folium)
239
+ # =======================
240
+
241
+ LUX_CENTER = [49.8153, 6.13]
242
+ LUX_ZOOM = 10
243
+
244
+ def build_map_html(selected_ts: Any,
245
+ gpx_lines: Optional[List[LineString]]) -> str:
246
+ d = normalize_selected_ts(selected_ts)
247
+
248
+ # Responsive map configuration
249
+ m = folium.Map(
250
+ location=LUX_CENTER,
251
+ zoom_start=LUX_ZOOM,
252
+ width="100%",
253
+ height="100vh",
254
+ tiles="OpenStreetMap",
255
+ attr=" ",
256
+ )
257
+ m.options['attributionControl'] = False
258
+
259
+ # 1. Add Hunting Lots (Polygons)
260
+ active_rows = df[df["dates"].apply(lambda ds: d in ds)]
261
+ active_polys: List[Polygon] = []
262
+
263
+ for _, row in active_rows.iterrows():
264
+ lot = row["lot"]
265
+ poly: Polygon = row["polygon"]
266
+ if poly.is_empty:
267
+ continue
268
+ active_polys.append(poly)
269
+
270
+ lot_str = f"{lot:03d}"
271
+ dates_for_lot = lot_dates_map.get(lot, [])
272
+ date_lines = [f"<b>{date_to_str(x)}</b>" for x in dates_for_lot]
273
+ html_popup = f"<b>{lot_str}</b><br><br>" + "<br>".join(date_lines)
274
+
275
+ gj = folium.GeoJson(
276
+ data=poly.__geo_interface__,
277
+ style_function=lambda feat, col="crimson": {
278
+ "fillColor": col,
279
+ "color": col,
280
+ "weight": 2,
281
+ "fillOpacity": 0.45,
282
+ },
283
+ )
284
+ folium.Popup(html_popup, max_width=300).add_to(gj)
285
+ gj.add_to(m)
286
+
287
+ # 2. Add GPX Lines (GeoJSON)
288
+ all_line_geoms = [] # For calculating bounds
289
+
290
+ if gpx_lines:
291
+ if active_polys:
292
+ # Split lines into overlapping (red) and non-overlapping (blue)
293
+ inter_lines = []
294
+ non_inter_lines = []
295
+
296
+ for line in gpx_lines:
297
+ inter, non_inter = split_line_by_polygons(line, active_polys)
298
+ inter_lines.extend(inter)
299
+ non_inter_lines.extend(non_inter)
300
+
301
+ if inter_lines:
302
+ folium.GeoJson(
303
+ data=MultiLineString(inter_lines).__geo_interface__,
304
+ style_function=lambda x: {"color": "red", "weight": 4, "opacity": 0.9}
305
+ ).add_to(m)
306
+ all_line_geoms.extend(inter_lines)
307
+
308
+ if non_inter_lines:
309
+ folium.GeoJson(
310
+ data=MultiLineString(non_inter_lines).__geo_interface__,
311
+ style_function=lambda x: {"color": "blue", "weight": 3, "opacity": 0.7}
312
+ ).add_to(m)
313
+ all_line_geoms.extend(non_inter_lines)
314
+ else:
315
+ # No hunting lots active, draw all lines in blue
316
+ if gpx_lines:
317
+ folium.GeoJson(
318
+ data=MultiLineString(gpx_lines).__geo_interface__,
319
+ style_function=lambda x: {"color": "blue", "weight": 3, "opacity": 0.7}
320
+ ).add_to(m)
321
+ all_line_geoms.extend(gpx_lines)
322
+
323
+ # 3. Auto-zoom to GPX track
324
+ if all_line_geoms:
325
+ # Calculate bounds: (minx, miny, maxx, maxy) -> (min_lon, min_lat, max_lon, max_lat)
326
+ min_x, min_y, max_x, max_y = MultiLineString(all_line_geoms).bounds
327
+ # Folium fit_bounds takes [[min_lat, min_lon], [max_lat, max_lon]]
328
+ m.fit_bounds([[min_y, min_x], [max_y, max_x]])
329
+
330
+ return m._repr_html_()
331
+
332
+
333
+ # =======================
334
+ # Gradio interface logic
335
+ # =======================
336
+
337
+ def app_fn(selected_ts: Any, gpx_file):
338
+ new_lines: List[LineString] = []
339
+ if gpx_file is not None:
340
+ new_lines = parse_gpx_file(gpx_file)
341
+ map_html = build_map_html(selected_ts, new_lines)
342
+ return map_html
343
+
344
+ def clear_gpx_fn(selected_ts: Any):
345
+ map_html = build_map_html(selected_ts, gpx_lines=None)
346
+ return map_html, None
347
+
348
+ # =======================
349
+ # Build Gradio UI
350
+ # =======================
351
+
352
+ # Removed css argument to fix crash. Added gr.HTML for styles below.
353
+ with gr.Blocks(title="Luxembourg Hunting Lots") as demo:
354
+
355
+ # Inject CSS for hiding footer
356
+ gr.HTML("""
357
+ <style>
358
+ footer {visibility: hidden}
359
+ .gradio-container {min-height: 0px !important;}
360
+ </style>
361
+ """)
362
+
363
+ gr.Markdown(
364
+ "## Hunting Dates in Luxembourg\n"
365
+ "Choose a date and optionally upload a GPX track to see overlaps "
366
+ "with active hunting lots.\n\n"
367
+ f"Data available from **{MIN_DATE}** to **{MAX_DATE}**."
368
+ )
369
+
370
+ with gr.Row():
371
+ date_input = gr.DateTime(
372
+ label="Select date",
373
+ value=date_to_timestamp(default_date()),
374
+ include_time=False,
375
+ )
376
+
377
+ gpx_input = gr.File(
378
+ label="Upload GPX track (optional)",
379
+ file_types=[".gpx"],
380
+ interactive=True
381
+ )
382
+
383
+ clear_btn = gr.Button("Clear GPX")
384
+
385
+ map_output = gr.HTML()
386
+
387
+ # Initial map
388
+ init_map_html = build_map_html(date_to_timestamp(default_date()), gpx_lines=None)
389
+ map_output.value = init_map_html
390
+
391
+ # Events
392
+ date_input.change(
393
+ fn=app_fn,
394
+ inputs=[date_input, gpx_input],
395
+ outputs=[map_output],
396
+ show_progress=False,
397
+ )
398
+
399
+ gpx_input.change(
400
+ fn=app_fn,
401
+ inputs=[date_input, gpx_input],
402
+ outputs=[map_output],
403
+ show_progress=True,
404
+ )
405
+
406
+ clear_btn.click(
407
+ fn=clear_gpx_fn,
408
+ inputs=[date_input],
409
+ outputs=[map_output, gpx_input],
410
+ show_progress=False,
411
+ )
412
+
413
+ gr.Markdown(
414
+ """
415
+ ---
416
+
417
+ [Freedom Luxembourg](https://www.freeletz.lu/freeletz/)
418
+
419
+ The information provided is offered “as is”, without any guarantees.
420
+ The only authoritative source of information is the official [GeoPortail](https://map.geoportail.lu/communes/Luxembourg/anf_dates_battues/?lang=en)
421
+ """
422
+ )
423
+
424
+ if __name__ == "__main__":
425
+ demo.launch()
hunting_dates.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6869b40e39f87153f85033dc22d1d635c52dfb5e3e2f089adbb6099599a9baa
3
+ size 12337939
letzhunt.py ADDED
@@ -0,0 +1,1004 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import json
4
+ import datetime
5
+ import pandas as pd
6
+ import requests
7
+ import re
8
+ import cv2
9
+ import numpy as np
10
+ from urllib.request import urlopen
11
+ from shapely.geometry import Polygon, MultiPolygon
12
+ from pyproj import Transformer
13
+ from tqdm import tqdm
14
+ from typing import List, Dict, Any, Tuple, Optional
15
+ import dateparser
16
+ import tempfile # << kept (no-op, left as requested)
17
+
18
+ from dataclasses import dataclass
19
+ from datetime import datetime as _dt, date as _date
20
+
21
+ import torch
22
+ from PIL import Image
23
+ from transformers import AutoProcessor
24
+ from transformers import HunYuanVLForConditionalGeneration
25
+
26
+ # super-image for upscaling
27
+ from super_image import DrlnModel, ImageLoader
28
+
29
+ # ================================
30
+ # --- Global Constants ---
31
+ # ================================
32
+
33
+ BASE_LOTS_FILE = 'hunting_lots.csv'
34
+ DATES_FILE = 'hunting_dates.csv'
35
+ TILES_DIR = 'tiles'
36
+
37
+ API_URL = "https://wms.inspire.geoportail.lu/geoserver/am/ogc/features/v1/collections/AM.HuntingLots/items?f=json&limit=1000&startIndex=0"
38
+ WMS_BASE_URL = "https://wmsproxy.geoportail.lu/ogcproxywms"
39
+
40
+ # --- Hunyuan OCR Configuration ---
41
+ HUNYUAN_MODEL_NAME = "tencent/HunyuanOCR"
42
+
43
+ # --- Super-resolution Configuration ---
44
+ SUPERRES_MODEL_NAME = "eugenesiow/drln-bam" # DRLN model family
45
+ SUPERRES_SCALE = 2 # must match model
46
+
47
+ # Max tolerated OCR day shift when repairing dates
48
+ MAX_OCR_DAY_SHIFT = 180
49
+
50
+ # ================================
51
+ # --- Utility Functions ---
52
+ # ================================
53
+
54
+ def safe_literal_eval(val):
55
+ """Safely evaluate string representations of lists/tuples."""
56
+ try:
57
+ if isinstance(val, str) and (val.startswith('[') or val.startswith('(')):
58
+ return json.loads(val.replace("'", '"').replace("(", "[").replace(")", "]"))
59
+ return val
60
+ except Exception:
61
+ return []
62
+
63
+
64
+ def ensure_directory(directory: str):
65
+ """Create directory if it doesn't exist."""
66
+ if not os.path.exists(directory):
67
+ os.makedirs(directory)
68
+
69
+
70
+ def file_uptodate(file_path: str, days: int, required_columns: List[str] = None) -> bool:
71
+ """Check if file exists, is recent, and has required columns."""
72
+ if not os.path.exists(file_path):
73
+ return False
74
+ mod_time = datetime.datetime.fromtimestamp(os.path.getmtime(file_path))
75
+ if (datetime.datetime.now() - mod_time).days > days:
76
+ return False
77
+ if required_columns:
78
+ try:
79
+ df = pd.read_csv(file_path, converters={'dates': safe_literal_eval})
80
+ return all(col in df.columns for col in required_columns)
81
+ except Exception:
82
+ return False
83
+ return True
84
+
85
+
86
+ def load_image_safe(image_path: str) -> Optional[np.ndarray]:
87
+ """Safely load an image with OpenCV, returning None if failed."""
88
+ try:
89
+ image = cv2.imread(image_path)
90
+ if image is None:
91
+ print(f"Warning: Could not load image {image_path}")
92
+ return None
93
+ return image
94
+ except Exception as e:
95
+ print(f"Error loading image {image_path}: {e}")
96
+ return None
97
+
98
+ # ================================
99
+ # --- Part 1: Hunting Lot Data ---
100
+ # ================================
101
+
102
+ def update_lots(url: str) -> pd.DataFrame:
103
+ """Fetches and processes hunting lot geo data."""
104
+ print("Fetching latest hunting lot data from server...")
105
+ try:
106
+ with urlopen(url) as response:
107
+ data = json.loads(response.read().decode())
108
+ except Exception as e:
109
+ print(f"Error fetching lot data: {e}")
110
+ return pd.DataFrame()
111
+
112
+ features = data.get('features', [])
113
+ transformer = Transformer.from_crs("EPSG:4326", "EPSG:3857", always_xy=True)
114
+
115
+ processed_lots: List[Dict[str, Any]] = []
116
+ for item in tqdm(features, desc="Processing Lot Geometry"):
117
+ properties = item.get('properties', {})
118
+ lot_num = properties.get('gml_description', 'Unknown')
119
+ geometry = item.get('geometry')
120
+
121
+ lot_data = {
122
+ 'lot': lot_num,
123
+ 'polygon': None,
124
+ 'centroid': None,
125
+ 'bbox': None
126
+ }
127
+
128
+ if geometry:
129
+ geom_type = geometry.get('type')
130
+ coords = geometry.get('coordinates')
131
+ lot_data['polygon'] = coords
132
+ try:
133
+ poly_obj = None
134
+ if geom_type == 'Polygon' and coords:
135
+ poly_obj = Polygon(coords[0])
136
+ elif geom_type == 'MultiPolygon' and coords:
137
+ poly_obj = MultiPolygon([Polygon(p[0]) for p in coords if len(p) > 0])
138
+
139
+ if poly_obj:
140
+ centroid = poly_obj.centroid
141
+ lot_data['centroid'] = (centroid.x, centroid.y)
142
+ x, y = transformer.transform(centroid.x, centroid.y)
143
+ lot_data['bbox'] = (x - 1000, y - 1000, x + 1000, y + 1000)
144
+ except Exception as e:
145
+ print(f"Geometry error for lot {lot_num}: {e}")
146
+
147
+ processed_lots.append(lot_data)
148
+
149
+ df = pd.DataFrame(processed_lots)
150
+ df = df[df['lot'] != 'Unknown'].copy()
151
+ df['lot'] = pd.to_numeric(df['lot'], errors='coerce')
152
+ df = df.dropna(subset=['lot']).astype({'lot': int}).sort_values('lot').reset_index(drop=True)
153
+
154
+ df.to_csv(BASE_LOTS_FILE, index=False)
155
+ print(f"Saved full lot geometry data → {BASE_LOTS_FILE}")
156
+ return df
157
+
158
+ # ================================
159
+ # --- Part 2: Tile Download ---
160
+ # ================================
161
+
162
+ def get_tile_path(lot_number: int) -> str:
163
+ """Get path to original tile."""
164
+ return os.path.join(TILES_DIR, f"{lot_number:03d}.png")
165
+
166
+
167
+ def tile_uptodate(lot_number: int, days: int = 7) -> bool:
168
+ """Check if tile is recent."""
169
+ path = get_tile_path(lot_number)
170
+ if not os.path.exists(path):
171
+ return False
172
+ mod_time = datetime.datetime.fromtimestamp(os.path.getmtime(path))
173
+ return (datetime.datetime.now() - mod_time).days <= days
174
+
175
+
176
+ def download_tile(lot_number: int, bounds: Tuple[float, float, float, float]) -> bool:
177
+ """Download WMS tile for a lot."""
178
+ try:
179
+ bbox_str = ",".join([f"{coord:.2f}" for coord in bounds])
180
+ params = {
181
+ 'SERVICE': 'WMS', 'VERSION': '1.3.0', 'REQUEST': 'GetMap',
182
+ 'FORMAT': 'image/png', 'TRANSPARENT': 'true',
183
+ 'LAYERS': 'anf_dates_battues', 'CRS': 'EPSG:3857',
184
+ 'STYLES': '', 'WIDTH': '512', 'HEIGHT': '512', 'BBOX': bbox_str
185
+ }
186
+ response = requests.get(WMS_BASE_URL, params=params, timeout=30)
187
+ response.raise_for_status()
188
+
189
+ ensure_directory(TILES_DIR)
190
+
191
+ with open(get_tile_path(lot_number), 'wb') as f:
192
+ f.write(response.content)
193
+
194
+ if os.path.exists(get_tile_path(lot_number)) and os.path.getsize(get_tile_path(lot_number)) > 0:
195
+ return True
196
+ else:
197
+ print(f"Downloaded file is empty or missing for lot {lot_number}")
198
+ return False
199
+
200
+ except requests.exceptions.RequestException as e:
201
+ print(f"Tile download failed for lot {lot_number}: {e}")
202
+ return False
203
+ except Exception as e:
204
+ print(f"Unexpected error downloading tile for lot {lot_number}: {e}")
205
+ return False
206
+
207
+ # ================================
208
+ # --- Super-resolution (DRLN x4) ---
209
+ # ================================
210
+
211
+ class SuperResolutionWrapper:
212
+ """
213
+ Thin wrapper around super-image DRLN x4 model.
214
+ Loaded once and reused for all tiles.
215
+ Runs on GPU if available, otherwise on CPU.
216
+ """
217
+ def __init__(self, model_name: str = SUPERRES_MODEL_NAME, scale: int = SUPERRES_SCALE):
218
+ print(f"Loading super-resolution model '{model_name}' (scale x{scale})...")
219
+ import torch
220
+
221
+ # Pick device: prefer CUDA if available
222
+ if torch.cuda.is_available():
223
+ self.device = torch.device("cuda")
224
+ else:
225
+ self.device = torch.device("cpu")
226
+
227
+ # Load model and move to device
228
+ self.model = DrlnModel.from_pretrained(model_name, scale=scale)
229
+ self.model = self.model.to(self.device)
230
+ self.model.eval() # inference mode
231
+
232
+ # Debug info
233
+ devices = {str(p.device) for p in self.model.parameters()}
234
+ print(f"Super-resolution model loaded on device(s): {devices}")
235
+ self.scale = scale
236
+
237
+ def _open_with_background(self, input_path: str, bg_color=(255, 255, 255)) -> Image.Image:
238
+ """
239
+ Open a possibly-transparent PNG and composite onto a solid background.
240
+ Default background is white (255,255,255).
241
+ """
242
+ img = Image.open(input_path)
243
+ if img.mode in ("RGBA", "LA") or (img.mode == "P" and "transparency" in img.info):
244
+ # Ensure RGBA
245
+ img = img.convert("RGBA")
246
+ bg = Image.new("RGB", img.size, bg_color)
247
+ bg.paste(img, mask=img.split()[-1]) # use alpha channel as mask
248
+ return bg
249
+ else:
250
+ # No alpha channel, just convert to RGB
251
+ return img.convert("RGB")
252
+
253
+ def upscale_image(self, input_path: str) -> Optional[Image.Image]:
254
+ """
255
+ Upscale an image and return the upscaled PIL image directly without saving to disk.
256
+ """
257
+ try:
258
+ img = self._open_with_background(input_path, bg_color=(255, 255, 255))
259
+
260
+ lr = ImageLoader.load_image(img)
261
+ if isinstance(lr, torch.Tensor):
262
+ lr = lr.to(self.device)
263
+ else:
264
+ lr = lr.to(self.device)
265
+
266
+ with torch.no_grad():
267
+ sr = self.model(lr)
268
+
269
+ if isinstance(sr, torch.Tensor):
270
+ sr_cpu = sr.detach().cpu()
271
+ else:
272
+ sr_cpu = sr
273
+
274
+ # Convert tensor back to PIL.Image using super-image utilities
275
+ # sr_cpu is expected to be in CHW, [0,1]
276
+ np_img = sr_cpu.squeeze(0).clamp(0, 1).mul(255).byte().permute(1, 2, 0).numpy()
277
+ return Image.fromarray(np_img)
278
+ except Exception as e:
279
+ print(f"Super-resolution (in-memory) failed for '{input_path}': {e}")
280
+ return None
281
+
282
+ # ================================
283
+ # --- Hunyuan OCR utilities ---
284
+ # ================================
285
+
286
+ def clean_repeated_substrings(text: str) -> str:
287
+ """Clean repeated substrings in text (your original logic)."""
288
+ n = len(text)
289
+ if n < 8000:
290
+ return text
291
+ for length in range(2, n // 10 + 1):
292
+ candidate = text[-length:]
293
+ count = 0
294
+ i = n - length
295
+
296
+ while i >= 0 and text[i:i + length] == candidate:
297
+ count += 1
298
+ i -= length
299
+
300
+ if count >= 10:
301
+ return text[:n - length * (count - 1)]
302
+
303
+ return text
304
+
305
+
306
+ @dataclass
307
+ class Line:
308
+ text: str
309
+ x1: int
310
+ y1: int
311
+ x2: int
312
+ y2: int
313
+
314
+ @property
315
+ def cx(self) -> float:
316
+ return (self.x1 + self.x2) / 2
317
+
318
+ @property
319
+ def cy(self) -> float:
320
+ return (self.y1 + self.y2) / 2
321
+
322
+
323
+ PATTERN = re.compile(r"""
324
+ (?P<text>.+?)
325
+ \(
326
+ (?P<x1>\d+)
327
+ ,
328
+ (?P<y1>\d+)
329
+ \),
330
+ \(
331
+ (?P<x2>\d+)
332
+ ,
333
+ (?P<y2>\d+)
334
+ \)
335
+ """, re.VERBOSE)
336
+
337
+
338
+ def parse_compact_ocr_string(s: str, img_w: int, img_h: int) -> list[Line]:
339
+ """
340
+ Parse HunyuanOCR's compact output string and
341
+ denormalize coordinates from [0,1000] to image pixels.
342
+ """
343
+ lines: list[Line] = []
344
+ for m in PATTERN.finditer(s):
345
+ text = m.group("text").strip()
346
+ x1_n = float(m.group("x1"))
347
+ y1_n = float(m.group("y1"))
348
+ x2_n = float(m.group("x2"))
349
+ y2_n = float(m.group("y2"))
350
+
351
+ x1 = int(x1_n * img_w / 1000.0)
352
+ y1 = int(y1_n * img_h / 1000.0)
353
+ x2 = int(x2_n * img_w / 1000.0)
354
+ y2 = int(y2_n * img_h / 1000.0)
355
+
356
+ lines.append(Line(text, x1, y1, x2, y2))
357
+ return lines
358
+
359
+
360
+ def lines_are_close(a: Line, b: Line, max_dx: float, max_dy: float) -> bool:
361
+ dx = abs(a.cx - b.cx)
362
+ dy = abs(a.cy - b.cy)
363
+ return dx <= max_dx and dy <= max_dy
364
+
365
+
366
+ def cluster_lines_into_labels(lines: list[Line], img_w: int, img_h: int) -> list[list[Line]]:
367
+ """
368
+ Cluster lines into labels based on spatial proximity in pixel space.
369
+ Each cluster should correspond to one hunting-lot label.
370
+ """
371
+ if not lines:
372
+ return []
373
+
374
+ max_dx = img_w * 0.2
375
+ max_dy = img_h * 0.2
376
+
377
+ labels: list[list[Line]] = []
378
+ visited: set[int] = set()
379
+
380
+ for i, line in enumerate(lines):
381
+ if i in visited:
382
+ continue
383
+
384
+ cluster_idx = len(labels)
385
+ labels.append([])
386
+ stack = [i]
387
+ visited.add(i)
388
+
389
+ while stack:
390
+ idx = stack.pop()
391
+ l = lines[idx]
392
+ labels[cluster_idx].append(l)
393
+
394
+ for j, other in enumerate(lines):
395
+ if j in visited:
396
+ continue
397
+ if lines_are_close(l, other, max_dx, max_dy):
398
+ visited.add(j)
399
+ stack.append(j)
400
+
401
+ for label in labels:
402
+ label.sort(key=lambda l: (l.cy, l.cx))
403
+
404
+ return labels
405
+
406
+
407
+ LOT_NUMBER_RE = re.compile(r"^\d{1,4}$")
408
+ DATE_RE = re.compile(r"^\s*\d{1,2}/\d{1,2}/\d{4}\s*$")
409
+
410
+
411
+ def is_lot_number(text: str) -> bool:
412
+ return bool(LOT_NUMBER_RE.fullmatch(text.strip()))
413
+
414
+
415
+ def is_battue_label(text: str) -> bool:
416
+ t = text.lower()
417
+ return "battue" in t and "treibjagd" in t
418
+
419
+
420
+ def is_date_line(text: str) -> bool:
421
+ return bool(DATE_RE.fullmatch(text))
422
+
423
+
424
+ def build_blocks_from_labels(labels: list[list[Line]]):
425
+ """
426
+ From clusters of lines, build structured blocks:
427
+ lot number + Battue/Treibjagd + list of dates.
428
+ """
429
+ blocks = []
430
+ for li, label_lines in enumerate(labels):
431
+ lot_line: Line | None = None
432
+ label_line: Line | None = None
433
+ date_lines: list[Line] = []
434
+
435
+ for l in label_lines:
436
+ txt = l.text.strip()
437
+ if is_lot_number(txt) and lot_line is None:
438
+ lot_line = l
439
+ elif is_battue_label(txt) and label_line is None:
440
+ label_line = l
441
+ elif is_date_line(txt):
442
+ date_lines.append(l)
443
+
444
+ if lot_line and label_line and date_lines:
445
+ date_lines.sort(key=lambda l: l.cy)
446
+ blocks.append({
447
+ "lot_line": lot_line,
448
+ "label_line": label_line,
449
+ "date_lines": date_lines,
450
+ })
451
+ return blocks
452
+
453
+
454
+ def edit_distance(a: str, b: str) -> int:
455
+ dp = [[i + j if i * j == 0 else 0 for j in range(len(b) + 1)]
456
+ for i in range(len(a) + 1)]
457
+ for i in range(1, len(a) + 1):
458
+ for j in range(1, len(b) + 1):
459
+ dp[i][j] = min(
460
+ dp[i - 1][j] + 1,
461
+ dp[i][j - 1] + 1,
462
+ dp[i - 1][j - 1] + (a[i - 1] != b[j - 1]),
463
+ )
464
+ return dp[-1][-1]
465
+
466
+
467
+ def lot_similarity(ocr_lot: str, target_lot: str) -> float:
468
+ a = ocr_lot.strip()
469
+ b = target_lot.strip()
470
+ if not a or not b:
471
+ return 0.0
472
+ dist = edit_distance(a, b)
473
+ return 1 - dist / max(len(a), len(b))
474
+
475
+
476
+ def is_centered(line: Line, img_w: int, img_h: int, tolerance_ratio: float = 0.15) -> bool:
477
+ """
478
+ A line is considered centered if it is centered both horizontally and vertically
479
+ within the given tolerance.
480
+ """
481
+ img_cx = img_w / 2
482
+ img_cy = img_h / 2
483
+ dx = abs(line.cx - img_cx)
484
+ dy = abs(line.cy - img_cy)
485
+ return dx <= tolerance_ratio * img_w and dy <= tolerance_ratio * img_h
486
+
487
+
488
+ def choose_block_for_lot(blocks, target_lot: str, img_w: int, img_h: int):
489
+ """
490
+ Apply heuristics with zero-padding logic:
491
+ 1. Check for exact match using 0-padded lot numbers (e.g. "001" == "001").
492
+ 2. If no exact match, prefer a block that is centered both horizontally and vertically.
493
+ """
494
+ exact_matches = []
495
+ centered_blocks = []
496
+
497
+ # Target lot is expected to be passed in as a 3-digit zero-padded string already
498
+ # but we ensure consistency here just in case.
499
+ if target_lot.isdigit():
500
+ target_lot_compare = f"{int(target_lot):03d}"
501
+ else:
502
+ target_lot_compare = target_lot
503
+
504
+ for idx, b in enumerate(blocks):
505
+ ocr_lot = b["lot_line"].text.strip()
506
+
507
+ # Normalize OCR output to 3-digit zero-padded for comparison
508
+ if ocr_lot.isdigit():
509
+ ocr_lot_compare = f"{int(ocr_lot):03d}"
510
+ else:
511
+ ocr_lot_compare = ocr_lot
512
+
513
+ sim = lot_similarity(ocr_lot_compare, target_lot_compare)
514
+ centered = is_centered(b["lot_line"], img_w, img_h)
515
+
516
+ # 1) Exact lot number match (padded) → always keep, regardless of position
517
+ if ocr_lot_compare == target_lot_compare:
518
+ exact_matches.append(b)
519
+ continue
520
+
521
+ # 2) Non-exact, but potentially useful candidate
522
+ if centered:
523
+ centered_blocks.append((sim, b))
524
+
525
+ # 1) If we have exact matches, choose the one closest to center as a tie-breaker
526
+ if exact_matches:
527
+ exact_matches.sort(
528
+ key=lambda blk: (
529
+ abs(blk["lot_line"].cx - img_w / 2),
530
+ abs(blk["lot_line"].cy - img_h / 2),
531
+ )
532
+ )
533
+ chosen = exact_matches[0]
534
+ return chosen
535
+
536
+ # 2) No exact match → pick the most centered (Fallback logic)
537
+ if centered_blocks:
538
+ img_center_x = img_w / 2
539
+ img_center_y = img_h / 2
540
+ centered_blocks.sort(
541
+ key=lambda sb: (
542
+ abs(sb[1]["lot_line"].cx - img_center_x)
543
+ + abs(sb[1]["lot_line"].cy - img_center_y),
544
+ -sb[0],
545
+ )
546
+ )
547
+ chosen_sim, chosen = centered_blocks[0]
548
+ return chosen
549
+
550
+ return None
551
+
552
+
553
+ def parse_date_str(s: str) -> _date | None:
554
+ try:
555
+ return _dt.strptime(s.strip(), "%d/%m/%Y").date()
556
+ except ValueError:
557
+ return None
558
+
559
+
560
+ def _current_season_bounds(today: Optional[_date] = None) -> tuple[_date, _date]:
561
+ """
562
+ Compute the [min_date, max_date] for the current Autumn/Winter season.
563
+ """
564
+ if today is None:
565
+ today = _dt.now().date()
566
+
567
+ y = today.year
568
+ m = today.month
569
+
570
+ if m in (1, 2):
571
+ # Season started last year (Sep) and ends this Feb (with leap handling)
572
+ season_start_year = y - 1
573
+ season_end_year = y
574
+ elif 3 <= m <= 8:
575
+ # Use upcoming season: Sep this year → Feb next year
576
+ season_start_year = y
577
+ season_end_year = y + 1
578
+ else: # 9–12
579
+ # Season started this Sep and ends next Feb
580
+ season_start_year = y
581
+ season_end_year = y + 1
582
+
583
+ season_min = _date(season_start_year, 9, 1)
584
+
585
+ # End-of-Feb with leap year handling
586
+ if (season_end_year % 4 == 0 and season_end_year % 100 != 0) or (season_end_year % 400 == 0):
587
+ feb_last_day = 29
588
+ else:
589
+ feb_last_day = 28
590
+ season_max = _date(season_end_year, 2, feb_last_day)
591
+
592
+ return season_min, season_max
593
+
594
+
595
+ def _clamp_and_fix_consecutive_dates(
596
+ dates: list[_date],
597
+ max_shift_days: int = MAX_OCR_DAY_SHIFT,
598
+ ) -> list[_date]:
599
+ """
600
+ Attempt to correct OCR date errors given season bounds and consecutiveness.
601
+ """
602
+ if not dates:
603
+ return []
604
+
605
+ season_min, season_max = _current_season_bounds()
606
+
607
+ # Sort dates as recognized
608
+ dates_sorted = sorted(dates)
609
+
610
+ # Clamp to season range with small shifts only
611
+ fixed = []
612
+ for d in dates_sorted:
613
+ if d < season_min:
614
+ delta = (season_min - d).days
615
+ if delta <= max_shift_days:
616
+ d = season_min
617
+ else:
618
+ continue
619
+ elif d > season_max:
620
+ delta = (d - season_max).days
621
+ if delta <= max_shift_days:
622
+ d = season_max
623
+ else:
624
+ continue
625
+ fixed.append(d)
626
+
627
+ if not fixed:
628
+ return []
629
+
630
+ fixed.sort()
631
+
632
+ # Enforce consecutiveness: treat first date as anchor, then +1 day increments
633
+ anchor = fixed[0]
634
+ consecutive = [anchor]
635
+ for i in range(1, len(fixed)):
636
+ expected = consecutive[-1] + datetime.timedelta(days=1)
637
+ diff = abs((fixed[i] - expected).days)
638
+ if diff <= max_shift_days:
639
+ consecutive.append(expected)
640
+ else:
641
+ break
642
+
643
+ # Final sanity: ensure all inside [season_min, season_max]
644
+ consecutive = [d for d in consecutive if season_min <= d <= season_max]
645
+ return consecutive
646
+
647
+
648
+ def extract_dates_from_block(block):
649
+ dates: list[_date] = []
650
+ for dline in block["date_lines"]:
651
+ dt = parse_date_str(dline.text)
652
+ if not dt:
653
+ continue
654
+ dates.append(dt)
655
+
656
+ dates_fixed = _clamp_and_fix_consecutive_dates(dates)
657
+ return dates_fixed
658
+
659
+
660
+ def extract_lot_dates_from_output(
661
+ output_texts,
662
+ target_lot: str,
663
+ image: Image.Image,
664
+ ):
665
+ if isinstance(output_texts, list):
666
+ text = output_texts[0]
667
+ else:
668
+ text = output_texts
669
+
670
+ img_w, img_h = image.size
671
+ lines = parse_compact_ocr_string(text, img_w, img_h)
672
+
673
+ if not lines:
674
+ return None
675
+
676
+ labels = cluster_lines_into_labels(lines, img_w, img_h)
677
+ blocks = build_blocks_from_labels(labels)
678
+
679
+ if not blocks:
680
+ return None
681
+
682
+ # Pass the already padded target_lot to the block chooser
683
+ chosen = choose_block_for_lot(blocks, target_lot, img_w, img_h)
684
+ if chosen is None:
685
+ return None
686
+
687
+ dates = extract_dates_from_block(chosen)
688
+ if not dates:
689
+ return None
690
+
691
+ return {
692
+ "lot_ocr": chosen["lot_line"].text.strip(),
693
+ "lot_centered": is_centered(chosen["lot_line"], img_w, img_h),
694
+ "dates": dates,
695
+ "bbox_lot": (
696
+ chosen["lot_line"].x1,
697
+ chosen["lot_line"].y1,
698
+ chosen["lot_line"].x2,
699
+ chosen["lot_line"].y2,
700
+ ),
701
+ }
702
+
703
+ # ================================
704
+ # --- HunyuanOCR wrapper (reused) ---
705
+ # ================================
706
+
707
+ class HunyuanOCR:
708
+ """
709
+ Lightweight wrapper to load the model/processor once
710
+ and run inference for many tiles.
711
+ """
712
+ def __init__(self, model_name_or_path: str = HUNYUAN_MODEL_NAME):
713
+ print(f"Loading HunyuanOCR model '{model_name_or_path}'...")
714
+ self.processor = AutoProcessor.from_pretrained(model_name_or_path, use_fast=False)
715
+ self.model = HunYuanVLForConditionalGeneration.from_pretrained(
716
+ model_name_or_path,
717
+ attn_implementation="eager",
718
+ torch_dtype=torch.bfloat16, # explicit
719
+ ).to("cuda")
720
+ print("HunyuanOCR model loaded.")
721
+
722
+ def run(self, image_path: str = None, image: Image.Image = None):
723
+ """
724
+ You can either pass an image_path (on-disk PNG) or a PIL.Image via `image`.
725
+ """
726
+ if image is None and image_path is None:
727
+ raise ValueError("Either image_path or image must be provided.")
728
+
729
+ processor = self.processor
730
+ model = self.model
731
+
732
+ if image is None:
733
+ image_inputs = Image.open(image_path)
734
+ else:
735
+ image_inputs = image
736
+
737
+ # For the chat template, we still need an identifier for the image.
738
+ image_identifier = image_path if image_path is not None else "in-memory.png"
739
+
740
+ messages1 = [
741
+ {
742
+ "role": "user",
743
+ "content": [
744
+ {"type": "image", "image": image_identifier},
745
+ {
746
+ "type": "text",
747
+ "text": (
748
+ "Detect and recognize text in the image, "
749
+ "and output the text coordinates in a formatted manner."
750
+ ),
751
+ },
752
+ ],
753
+ }
754
+ ]
755
+ messages = [messages1]
756
+ texts = [
757
+ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
758
+ for msg in messages
759
+ ]
760
+
761
+ inputs = processor(
762
+ text=texts,
763
+ images=image_inputs,
764
+ padding=True,
765
+ return_tensors="pt",
766
+ )
767
+
768
+ with torch.no_grad():
769
+ device = next(model.parameters()).device
770
+ inputs = inputs.to(device)
771
+ generated_ids = model.generate(
772
+ **inputs,
773
+ max_new_tokens=256,
774
+ do_sample=False,
775
+ )
776
+
777
+ if "input_ids" in inputs:
778
+ input_ids = inputs.input_ids
779
+ else:
780
+ input_ids = inputs.inputs
781
+
782
+ generated_ids_trimmed = [
783
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(input_ids, generated_ids)
784
+ ]
785
+ output_texts = clean_repeated_substrings(
786
+ processor.batch_decode(
787
+ generated_ids_trimmed,
788
+ skip_special_tokens=True,
789
+ clean_up_tokenization_spaces=False,
790
+ )
791
+ )
792
+ return image_inputs, output_texts
793
+
794
+ # ================================
795
+ # --- Main Processing Logic (Hunyuan + Super-res) ---
796
+ # ================================
797
+
798
+ def get_hunt_dates_with_ocr(df: pd.DataFrame) -> pd.DataFrame:
799
+ """
800
+ Main function to extract hunting dates using:
801
+ - WMS tiles (512x512)
802
+ - 4x super-resolution via DRLN (in-memory)
803
+ - HunyuanOCR for OCR
804
+ """
805
+ ensure_directory(TILES_DIR)
806
+
807
+ print("\nStep 1: Downloading and preparing tiles...")
808
+ for _, row in tqdm(df.iterrows(), total=df.shape[0], desc="Preparing Tiles"):
809
+ lot_num = int(row['lot'])
810
+
811
+ if row['bbox'] and not tile_uptodate(lot_num):
812
+ success = download_tile(lot_num, row['bbox'])
813
+ if not success:
814
+ print(f"Warning: Failed to download tile for lot {lot_num}")
815
+
816
+ # Initialize models once
817
+ try:
818
+ sr_model = SuperResolutionWrapper(SUPERRES_MODEL_NAME, SUPERRES_SCALE)
819
+ except Exception as e:
820
+ print(f"\nFATAL ERROR during super-resolution initialization: {e}")
821
+ exit(1)
822
+
823
+ try:
824
+ ocr = HunyuanOCR(HUNYUAN_MODEL_NAME)
825
+ except Exception as e:
826
+ print(f"\nFATAL ERROR during HunyuanOCR initialization: {e}")
827
+ exit(1)
828
+
829
+ all_dates: List[List[str]] = []
830
+ stats = {
831
+ 'total_lots': len(df),
832
+ 'lots_with_dates': 0,
833
+ 'failed_lots': 0,
834
+ 'no_tile': 0,
835
+ 'tile_load_failed': 0,
836
+ 'sr_failed': 0,
837
+ }
838
+
839
+ print("\nStep 2: Running super-resolution + HunyuanOCR...")
840
+
841
+ for _, row in tqdm(df.iterrows(), total=df.shape[0], desc="Extracting Dates"):
842
+ lot_number = int(row['lot'])
843
+
844
+ # 1. Format target lot as 3-digit zero-padded string for consistent comparison
845
+ # e.g. lot 1 becomes "001"
846
+ lot_str = f"{lot_number:03d}"
847
+ tile_path = get_tile_path(lot_number)
848
+
849
+ print(f"\n--- Processing Lot {lot_str} ---")
850
+
851
+ if not os.path.exists(tile_path):
852
+ print(" > Status: Tile not found.")
853
+ all_dates.append([])
854
+ stats['failed_lots'] += 1
855
+ stats['no_tile'] += 1
856
+ continue
857
+
858
+ # Light check the original tile with cv2
859
+ test_image = load_image_safe(tile_path)
860
+ if test_image is None:
861
+ print(" > Status: Tile exists but cannot be loaded (cv2 test failed).")
862
+ all_dates.append([])
863
+ stats['failed_lots'] += 1
864
+ stats['tile_load_failed'] += 1
865
+ continue
866
+
867
+ # Super-res: in-memory upscaling only
868
+ ocr_image_pil: Optional[Image.Image] = sr_model.upscale_image(tile_path)
869
+
870
+ if ocr_image_pil is None:
871
+ print(" > Status: Super-resolution failed; falling back to original tile.")
872
+ stats['sr_failed'] += 1
873
+ ocr_input_path = tile_path
874
+ else:
875
+ ocr_input_path = None
876
+
877
+ try:
878
+ if ocr_image_pil is not None:
879
+ # OCR from in-memory PIL image
880
+ image_pil, output_texts = ocr.run(image=ocr_image_pil)
881
+ else:
882
+ # OCR from file path (original)
883
+ image_pil, output_texts = ocr.run(image_path=ocr_input_path)
884
+ except Exception as e:
885
+ print(f" > HunyuanOCR inference error: {e}")
886
+ all_dates.append([])
887
+ stats['failed_lots'] += 1
888
+ # Cleanup
889
+ if ocr_image_pil: del ocr_image_pil
890
+ continue
891
+
892
+ # Pass the zero-padded lot_str and both dimensions to the extraction function
893
+ result = extract_lot_dates_from_output(output_texts, lot_str, image_pil)
894
+
895
+ if result is None:
896
+ print(" > Status: No valid dates found for this lot.")
897
+ all_dates.append([])
898
+ stats['failed_lots'] += 1
899
+ else:
900
+ print(" > Status: Dates found.")
901
+
902
+ chosen_lot = result['lot_ocr']
903
+ dates_objs: List[_date] = result['dates']
904
+ dates_strs = [d.strftime("%d/%m/%Y") for d in dates_objs]
905
+
906
+ # --- Console Output for Verification ---
907
+ print(f" > Real Lot: {lot_str}")
908
+ print(f" > OCR Lot : {chosen_lot}")
909
+ print(f" > Dates : {dates_strs}")
910
+
911
+ # Normalize detected lot for warning check
912
+ chosen_lot_padded = chosen_lot
913
+ if chosen_lot.isdigit():
914
+ chosen_lot_padded = f"{int(chosen_lot):03d}"
915
+
916
+ if lot_str != chosen_lot_padded:
917
+ print(f" > Warning : OCR lot ({chosen_lot}) != Real lot ({lot_str}) [Used centered block]")
918
+
919
+ all_dates.append(dates_strs)
920
+ stats['lots_with_dates'] += 1
921
+
922
+ # Explicit memory cleanup
923
+ if 'ocr_image_pil' in locals() and ocr_image_pil:
924
+ del ocr_image_pil
925
+ if 'image_pil' in locals() and image_pil:
926
+ del image_pil
927
+
928
+ print("\n=== HunyuanOCR + Super-resolution Summary ===")
929
+ print(f"Total lots processed: {stats['total_lots']}")
930
+ print(f"Lots with dates found: {stats['lots_with_dates']}")
931
+ print(f"Failed (no tile): {stats['no_tile']}")
932
+ print(f"Failed (tile load error): {stats['tile_load_failed']}")
933
+ print(f"Failed (super-resolution errors): {stats['sr_failed']}")
934
+ print(f"Failed (other): {stats['failed_lots'] - stats['no_tile'] - stats['tile_load_failed']}")
935
+ success_rate = (stats['lots_with_dates'] / stats['total_lots']) * 100 if stats['total_lots'] > 0 else 0
936
+ print(f"Success Rate: {success_rate:.1f}%")
937
+
938
+ df['dates'] = all_dates
939
+ return df
940
+
941
+ # ================================
942
+ # --- Main Execution ---
943
+ # ================================
944
+
945
+ if __name__ == "__main__":
946
+ REQUIRED_COLUMNS = ['lot', 'polygon', 'centroid', 'bbox', 'dates']
947
+
948
+ # --- Part 1: Get Lot Data ---
949
+ if file_uptodate(BASE_LOTS_FILE, days=30, required_columns=['lot', 'polygon', 'centroid', 'bbox']):
950
+ print(f"Using recent lot data from '{BASE_LOTS_FILE}'")
951
+ df_lots = pd.read_csv(
952
+ BASE_LOTS_FILE,
953
+ converters={
954
+ 'polygon': safe_literal_eval,
955
+ 'centroid': safe_literal_eval,
956
+ 'bbox': safe_literal_eval
957
+ }
958
+ )
959
+ else:
960
+ print("Lot data is outdated or missing. Fetching new data...")
961
+ df_lots = update_lots(API_URL)
962
+ if df_lots.empty:
963
+ print("Failed to get lot data. Exiting.")
964
+ exit(1)
965
+
966
+ # --- Part 2: Get Hunt Dates ---
967
+ if file_uptodate(DATES_FILE, days=1, required_columns=REQUIRED_COLUMNS):
968
+ print(f"\nUsing recent hunting dates from '{DATES_FILE}'")
969
+ df_dates = pd.read_csv(
970
+ DATES_FILE,
971
+ converters={
972
+ 'dates': safe_literal_eval,
973
+ 'polygon': safe_literal_eval,
974
+ 'centroid': safe_literal_eval,
975
+ 'bbox': safe_literal_eval
976
+ }
977
+ )
978
+ else:
979
+ print("\nHunting dates file is outdated or missing. Running HunyuanOCR + super-resolution process...")
980
+ df_dates = get_hunt_dates_with_ocr(df_lots.copy())
981
+
982
+ df_save = df_dates.copy()
983
+ df_save['dates'] = df_save['dates'].apply(lambda d: tuple(d) if isinstance(d, list) else ())
984
+ df_save[REQUIRED_COLUMNS].to_csv(DATES_FILE, index=False)
985
+ print(f"\nSaved latest hunting dates to '{DATES_FILE}'")
986
+
987
+ # --- Part 3: Display Results ---
988
+ print("\n--- Final Results ---")
989
+
990
+ df_dates['has_dates'] = df_dates['dates'].apply(lambda d: isinstance(d, (list, tuple)) and len(d) > 0)
991
+ lots_with_dates = df_dates[df_dates['has_dates']].copy()
992
+
993
+ print(f"Found dates for {len(lots_with_dates)} / {len(df_dates)} lots.")
994
+
995
+ if not lots_with_dates.empty:
996
+ print("\nFirst 15 lots with dates found:")
997
+ for _, row in lots_with_dates.head(15).iterrows():
998
+ dates = row['dates'] if isinstance(row['dates'], list) else list(row['dates'])
999
+ print(f"Lot {row['lot']:03d}: {dates}")
1000
+ else:
1001
+ print("\nNo hunting dates were found for any lots.")
1002
+ print("\nTroubleshooting:")
1003
+ print("1. Check that tiles are downloaded in tiles/")
1004
+ print("2. Check GPU memory usage for DRLN and HunyuanOCR")
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ folium
2
+ gpxpy
3
+ gradio
4
+ lxml
5
+ pandas
6
+ shapely