Update app.py
Browse files
app.py
CHANGED
|
@@ -1,67 +1,78 @@
|
|
| 1 |
-
import
|
| 2 |
-
from fastapi import
|
| 3 |
-
from pydantic import BaseModel
|
| 4 |
-
from llama_cpp import Llama
|
| 5 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
# ---------------------------------------------------------
|
| 15 |
-
# 1. Descargar modelo directamente a RAM (/dev/shm)
|
| 16 |
-
# ---------------------------------------------------------
|
| 17 |
-
if not os.path.exists(MODEL_PATH):
|
| 18 |
-
print("Descargando modelo a RAM...")
|
| 19 |
-
hf_hub_download(
|
| 20 |
-
repo_id=MODEL_REPO,
|
| 21 |
-
filename=MODEL_FILE,
|
| 22 |
-
local_dir="/dev/shm",
|
| 23 |
-
local_dir_use_symlinks=False
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
# ---------------------------------------------------------
|
| 27 |
-
# 2. Cargar modelo con llama.cpp
|
| 28 |
-
# ---------------------------------------------------------
|
| 29 |
-
print("Cargando modelo Phi-3 Mini en RAM…")
|
| 30 |
-
llm = Llama(
|
| 31 |
-
model_path=MODEL_PATH,
|
| 32 |
-
n_ctx=4096,
|
| 33 |
-
n_threads=6,
|
| 34 |
-
verbose=False,
|
| 35 |
)
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
# 4. Endpoint principal tipo ChatGPT
|
| 49 |
-
# ---------------------------------------------------------
|
| 50 |
-
@app.post("/chat")
|
| 51 |
-
def chat(req: ChatRequest):
|
| 52 |
-
prompt = f"""Eres un asistente para una app de himnos y Biblia.
|
| 53 |
-
Responde de forma clara, breve y espiritual.
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
|
|
|
|
| 58 |
output = llm(
|
| 59 |
-
|
| 60 |
-
max_tokens=
|
| 61 |
-
temperature=0.6,
|
| 62 |
-
top_p=0.95,
|
| 63 |
-
stop=["Usuario:", "Asistente:"]
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ifrom fastapi import FastAPI
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
+
from llama_cpp import Llama
|
| 5 |
+
import json
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
+
app.add_middleware(
|
| 10 |
+
CORSMiddleware,
|
| 11 |
+
allow_origins=["*"],
|
| 12 |
+
allow_methods=["*"],
|
| 13 |
+
allow_headers=["*"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# --------- Cargar modelo GGUF en RAM ---------
|
| 17 |
+
|
| 18 |
+
print("Descargando modelo a RAM...")
|
| 19 |
+
model_path = hf_hub_download(
|
| 20 |
+
repo_id="second-state/Gemma-2B-Instruct-GGUF",
|
| 21 |
+
filename="Gemma-2B-Instruct-Q4_K_M.gguf"
|
| 22 |
+
)
|
| 23 |
|
| 24 |
+
print("Cargando modelo...")
|
| 25 |
+
llm = Llama(
|
| 26 |
+
model_path=model_path,
|
| 27 |
+
n_ctx=2000,
|
| 28 |
+
n_threads=4,
|
| 29 |
+
use_mlock=True
|
| 30 |
+
)
|
| 31 |
|
| 32 |
+
# --------- Cargar himnos.jsonl ---------
|
| 33 |
+
print("Cargando himnos.jsonl...")
|
| 34 |
+
HIMNOS = []
|
| 35 |
+
with open("himnos.jsonl", "r", encoding="utf-8") as f:
|
| 36 |
+
for line in f:
|
| 37 |
+
HIMNOS.append(json.loads(line))
|
| 38 |
|
| 39 |
|
| 40 |
+
# ============ ENDPOINT PRINCIPAL =============
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
@app.post("/predict")
|
| 43 |
+
def generar_respuesta(request: dict):
|
| 44 |
+
prompt_usuario = request.get("prompt", "")
|
| 45 |
|
| 46 |
+
# Pasar al modelo
|
| 47 |
output = llm(
|
| 48 |
+
f"Responde de forma breve y clara al usuario: {prompt_usuario}",
|
| 49 |
+
max_tokens=200
|
|
|
|
|
|
|
|
|
|
| 50 |
)
|
| 51 |
|
| 52 |
+
texto = output["choices"][0]["text"]
|
| 53 |
+
|
| 54 |
+
# Calcular relevancia simple (sin embeddings)
|
| 55 |
+
resultados = []
|
| 56 |
+
for h in HIMNOS:
|
| 57 |
+
titulo = h["titulo"].lower()
|
| 58 |
+
texto_prompt = prompt_usuario.lower()
|
| 59 |
+
|
| 60 |
+
# coincidencia básica
|
| 61 |
+
puntos = 0
|
| 62 |
+
for palabra in texto_prompt.split():
|
| 63 |
+
if palabra in titulo:
|
| 64 |
+
puntos += 1
|
| 65 |
+
|
| 66 |
+
resultados.append({
|
| 67 |
+
"id": h["id"],
|
| 68 |
+
"titulo": h["titulo"],
|
| 69 |
+
"relacion": puntos
|
| 70 |
+
})
|
| 71 |
+
|
| 72 |
+
# ordenar por relación
|
| 73 |
+
resultados = sorted(resultados, key=lambda x: -x["relacion"])[:7]
|
| 74 |
+
|
| 75 |
+
return {
|
| 76 |
+
"respuesta": texto,
|
| 77 |
+
"recomendados": resultados
|
| 78 |
+
}
|