Masaaki Kawata
commited on
Commit
Β·
4d03b1b
1
Parent(s):
359e4ac
Add parallax.py
Browse files- parallax.py +431 -0
parallax.py
ADDED
|
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from PIL import Image, ImageFilter
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 8 |
+
from ultralytics import YOLO
|
| 9 |
+
from simple_lama_inpainting import SimpleLama
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
load_dotenv(verbose=False)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
depth_anything_model_path = hf_hub_download(repo_id='depth-anything/Depth-Anything-V2-Large', filename='depth_anything_v2_vitl.pth', repo_type='model', token=os.environ['HF_TOKEN'])
|
| 16 |
+
yolo_hand_model_path = hf_hub_download('Bingsu/adetailer', 'hand_yolov8n.pt', token=os.environ['HF_TOKEN'])
|
| 17 |
+
yolo_person_model_path = hf_hub_download('Bingsu/adetailer', 'person_yolov8n-seg.pt', token=os.environ['HF_TOKEN'])
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def resize_iamge(image, maximum=2048, resample=Image.Resampling.LANCZOS):
|
| 21 |
+
width, height = image.size
|
| 22 |
+
|
| 23 |
+
if width < height:
|
| 24 |
+
if maximum < height:
|
| 25 |
+
scale = maximum / height
|
| 26 |
+
else:
|
| 27 |
+
return image
|
| 28 |
+
elif maximum < width:
|
| 29 |
+
scale = maximum / width
|
| 30 |
+
else:
|
| 31 |
+
return image
|
| 32 |
+
|
| 33 |
+
return image.resize((round(width * scale), round(height * scale)), resample=resample)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def kmeans_pp(X, n_clusters, n_init=1, max_iter=300, tol=1e-4, random_state=None):
|
| 37 |
+
X = np.asarray(X, dtype=np.float32)
|
| 38 |
+
N, D = X.shape
|
| 39 |
+
n_clusters = min(n_clusters, N)
|
| 40 |
+
|
| 41 |
+
rng = np.random.default_rng(random_state)
|
| 42 |
+
|
| 43 |
+
def init_plus_plus():
|
| 44 |
+
centers = np.empty((n_clusters, D), dtype=np.float32)
|
| 45 |
+
idx0 = rng.integers(N)
|
| 46 |
+
centers[0] = X[idx0]
|
| 47 |
+
d2 = np.sum((X - centers[0])**2, axis=1)
|
| 48 |
+
|
| 49 |
+
for c in range(1, n_clusters):
|
| 50 |
+
s = d2.sum()
|
| 51 |
+
|
| 52 |
+
if not np.isfinite(s) or s <= 0:
|
| 53 |
+
idx = rng.integers(N)
|
| 54 |
+
else:
|
| 55 |
+
r = rng.random() * s
|
| 56 |
+
idx = np.searchsorted(np.cumsum(d2), r)
|
| 57 |
+
|
| 58 |
+
if idx >= N:
|
| 59 |
+
idx = N - 1
|
| 60 |
+
|
| 61 |
+
centers[c] = X[idx]
|
| 62 |
+
d2 = np.minimum(d2, np.sum((X - centers[c])**2, axis=1))
|
| 63 |
+
|
| 64 |
+
return centers
|
| 65 |
+
|
| 66 |
+
best_inertia = np.inf
|
| 67 |
+
best_labels = None
|
| 68 |
+
best_centers = None
|
| 69 |
+
|
| 70 |
+
for _ in range(n_init):
|
| 71 |
+
centers = init_plus_plus()
|
| 72 |
+
|
| 73 |
+
labels = np.full(N, -1, dtype=np.int32)
|
| 74 |
+
|
| 75 |
+
for _it in range(max_iter):
|
| 76 |
+
dmin = np.full(N, np.inf, dtype=np.float32)
|
| 77 |
+
|
| 78 |
+
for c in range(n_clusters):
|
| 79 |
+
d = np.sum((X - centers[c])**2, axis=1)
|
| 80 |
+
better = d < dmin
|
| 81 |
+
labels[better] = c
|
| 82 |
+
dmin[better] = d[better]
|
| 83 |
+
|
| 84 |
+
new_centers = centers.copy()
|
| 85 |
+
empty = []
|
| 86 |
+
|
| 87 |
+
for c in range(n_clusters):
|
| 88 |
+
pts = X[labels == c]
|
| 89 |
+
if pts.size == 0:
|
| 90 |
+
empty.append(c)
|
| 91 |
+
else:
|
| 92 |
+
new_centers[c] = pts.mean(axis=0).astype(np.float32)
|
| 93 |
+
|
| 94 |
+
if empty:
|
| 95 |
+
far_idx = np.argmax(dmin)
|
| 96 |
+
|
| 97 |
+
for c in empty:
|
| 98 |
+
new_centers[c] = X[far_idx]
|
| 99 |
+
|
| 100 |
+
shift = np.sqrt(((centers - new_centers)**2).sum(axis=1)).max()
|
| 101 |
+
centers = new_centers
|
| 102 |
+
|
| 103 |
+
if shift <= tol:
|
| 104 |
+
break
|
| 105 |
+
|
| 106 |
+
dmin = np.full(N, np.inf, dtype=np.float32)
|
| 107 |
+
|
| 108 |
+
for c in range(n_clusters):
|
| 109 |
+
d = np.sum((X - centers[c])**2, axis=1)
|
| 110 |
+
better = d < dmin
|
| 111 |
+
labels[better] = c
|
| 112 |
+
dmin[better] = d[better]
|
| 113 |
+
inertia = float(dmin.sum())
|
| 114 |
+
|
| 115 |
+
if inertia < best_inertia:
|
| 116 |
+
best_inertia = inertia
|
| 117 |
+
best_labels = labels.copy()
|
| 118 |
+
best_centers = centers.copy()
|
| 119 |
+
|
| 120 |
+
return best_labels, best_centers
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def connected_components_8(mask: np.ndarray):
|
| 124 |
+
H, W = mask.shape
|
| 125 |
+
labels = np.zeros((H, W), dtype=np.int32)
|
| 126 |
+
seen = np.zeros((H, W), dtype=bool)
|
| 127 |
+
nbrs = [(-1,-1),(-1,0),(-1,1),
|
| 128 |
+
( 0,-1), ( 0,1),
|
| 129 |
+
( 1,-1),( 1,0),( 1,1)]
|
| 130 |
+
comp_id = 0
|
| 131 |
+
bboxes = []
|
| 132 |
+
|
| 133 |
+
ys, xs = np.where(mask)
|
| 134 |
+
|
| 135 |
+
for y0, x0 in zip(ys, xs):
|
| 136 |
+
if seen[y0, x0]:
|
| 137 |
+
continue
|
| 138 |
+
|
| 139 |
+
comp_id += 1
|
| 140 |
+
stack = [(y0, x0)]
|
| 141 |
+
seen[y0, x0] = True
|
| 142 |
+
labels[y0, x0] = comp_id
|
| 143 |
+
|
| 144 |
+
minx = maxx = x0
|
| 145 |
+
miny = maxy = y0
|
| 146 |
+
|
| 147 |
+
while stack:
|
| 148 |
+
y, x = stack.pop()
|
| 149 |
+
|
| 150 |
+
if x < minx: minx = x
|
| 151 |
+
if x > maxx: maxx = x
|
| 152 |
+
if y < miny: miny = y
|
| 153 |
+
if y > maxy: maxy = y
|
| 154 |
+
|
| 155 |
+
for dy, dx in nbrs:
|
| 156 |
+
ny, nx = y + dy, x + dx
|
| 157 |
+
|
| 158 |
+
if 0 <= ny < H and 0 <= nx < W:
|
| 159 |
+
if mask[ny, nx] and not seen[ny, nx]:
|
| 160 |
+
seen[ny, nx] = True
|
| 161 |
+
labels[ny, nx] = comp_id
|
| 162 |
+
stack.append((ny, nx))
|
| 163 |
+
|
| 164 |
+
bboxes.append((minx, miny, maxx, maxy))
|
| 165 |
+
|
| 166 |
+
return labels, bboxes
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def bbox_contained(inner, outer):
|
| 170 |
+
fx1, fy1, fx2, fy2 = inner
|
| 171 |
+
mx1, my1, mx2, my2 = outer
|
| 172 |
+
|
| 173 |
+
return (fx1 >= mx1) and (fy1 >= my1) and (fx2 <= mx2) and (fy2 <= my2)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def expand_bbox(b, H, W, pad=1):
|
| 177 |
+
x1,y1,x2,y2 = b
|
| 178 |
+
|
| 179 |
+
return (max(0, x1-pad), max(0, y1-pad), min(W-1, x2+pad), min(H-1, y2+pad))
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def overlap_ratio(a, b):
|
| 183 |
+
ix1, iy1 = max(a[0], b[0]), max(a[1], b[1])
|
| 184 |
+
ix2, iy2 = min(a[2], b[2]), min(a[3], b[3])
|
| 185 |
+
|
| 186 |
+
if ix1 >= ix2 or iy1 >= iy2:
|
| 187 |
+
return 0.0
|
| 188 |
+
|
| 189 |
+
inter = (ix2 - ix1) * (iy2 - iy1)
|
| 190 |
+
area = (b[2] - b[0]) * (b[3] - b[1])
|
| 191 |
+
|
| 192 |
+
return inter / area
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def feather(image: Image.Image, gauss_radius=1, band_px=1, strength=1.0) -> Image.Image:
|
| 196 |
+
A_pil = image.getchannel('A')
|
| 197 |
+
k = 2 * int(band_px) + 1 # odd
|
| 198 |
+
a_dil = A_pil.filter(ImageFilter.MaxFilter(k))
|
| 199 |
+
a_ero = A_pil.filter(ImageFilter.MinFilter(k))
|
| 200 |
+
band = np.asarray(a_dil, dtype=np.uint8) != np.asarray(a_ero, dtype=np.uint8)
|
| 201 |
+
|
| 202 |
+
arr = np.asarray(image, dtype=np.float32) / 255.0
|
| 203 |
+
A = arr[..., 3:4]
|
| 204 |
+
rgb_pm = arr[..., :3] * A
|
| 205 |
+
|
| 206 |
+
pm_rgba_u8 = np.empty(arr.shape, dtype=np.uint8)
|
| 207 |
+
pm_rgba_u8[..., :3] = np.clip(rgb_pm * 255.0, 0, 255).astype(np.uint8)
|
| 208 |
+
pm_rgba_u8[..., 3] = (arr[..., 3] * 255.0 + 0.5).astype(np.uint8)
|
| 209 |
+
|
| 210 |
+
blurred = Image.fromarray(pm_rgba_u8, 'RGBA').filter(ImageFilter.GaussianBlur(gauss_radius))
|
| 211 |
+
blurred_f = np.asarray(blurred, dtype=np.float32) / 255.0
|
| 212 |
+
rgb_pm_blur = blurred_f[..., :3]
|
| 213 |
+
A_blur = blurred_f[..., 3:4]
|
| 214 |
+
|
| 215 |
+
s = float(np.clip(strength, 0.0, 1.0))
|
| 216 |
+
|
| 217 |
+
if s < 1.0:
|
| 218 |
+
A_blur = (1.0 - s) * A + s * A_blur
|
| 219 |
+
|
| 220 |
+
eps = 1e-6
|
| 221 |
+
rgb_norm = rgb_pm_blur / np.maximum(A_blur, eps)
|
| 222 |
+
|
| 223 |
+
band3 = band[..., None]
|
| 224 |
+
out_rgb = np.where(band3, rgb_norm, arr[..., :3])
|
| 225 |
+
out_A = np.where(band3, A_blur, A)
|
| 226 |
+
|
| 227 |
+
out = np.concatenate([out_rgb, out_A], axis=-1)
|
| 228 |
+
out = (np.clip(out, 0.0, 1.0) * 255.0 + 0.5).astype(np.uint8)
|
| 229 |
+
|
| 230 |
+
return Image.fromarray(out, 'RGBA')
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def generate_parallax_images(image, n_layers=5):
|
| 234 |
+
rgb_image = resize_iamge(image.convert('RGB'), 2048)
|
| 235 |
+
width, height = rgb_image.size
|
| 236 |
+
rgb = np.asarray(rgb_image)
|
| 237 |
+
|
| 238 |
+
device = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 239 |
+
depth_anything = DepthAnythingV2(**{'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]})
|
| 240 |
+
depth_anything.load_state_dict(torch.load(depth_anything_model_path, map_location='cpu'))
|
| 241 |
+
depth_anything = depth_anything.to(device).eval()
|
| 242 |
+
hand_yolo = YOLO(yolo_hand_model_path)
|
| 243 |
+
person_yolo = YOLO(yolo_person_model_path)
|
| 244 |
+
lama = SimpleLama(device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 245 |
+
|
| 246 |
+
depth = depth_anything.infer_image(rgb[:, :, ::-1])
|
| 247 |
+
|
| 248 |
+
n_clusters = n_layers
|
| 249 |
+
x = depth.reshape(-1, 1)
|
| 250 |
+
mask = np.isfinite(x[:, 0])
|
| 251 |
+
labels, centers = kmeans_pp(x[mask].astype(np.float32), n_clusters=n_clusters, n_init=1, max_iter=300, tol=1e-4, random_state=None)
|
| 252 |
+
centers = centers.reshape(-1)
|
| 253 |
+
order = np.argsort(centers)
|
| 254 |
+
rank_of_label = np.empty_like(order)
|
| 255 |
+
rank_of_label[order] = np.arange(n_clusters)
|
| 256 |
+
labels_full = np.full(x.shape[0], -1, dtype=int)
|
| 257 |
+
labels_full[mask] = labels
|
| 258 |
+
levels = centers[order].astype(np.float64)
|
| 259 |
+
quantized_depth = np.zeros(x.shape[0], dtype=np.float32)
|
| 260 |
+
valid_idx = np.where(mask)[0]
|
| 261 |
+
quantized_depth[valid_idx] = levels[rank_of_label[labels_full[valid_idx]]]
|
| 262 |
+
quantized_depth = quantized_depth.reshape(height, width)
|
| 263 |
+
depth = quantized_depth.astype(np.float64)
|
| 264 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min() + 1e-8)
|
| 265 |
+
edges = (levels - levels.min()) / (levels.max() - levels.min() + 1e-8)
|
| 266 |
+
|
| 267 |
+
depth_mod = np.zeros_like(depth, dtype=np.float64)
|
| 268 |
+
front_mask = depth >= edges[len(edges) - 1]
|
| 269 |
+
|
| 270 |
+
front_labels, front_bboxes = connected_components_8(front_mask)
|
| 271 |
+
_, near_bboxes = connected_components_8(depth >= edges[1])
|
| 272 |
+
|
| 273 |
+
inpaint_mask = np.zeros_like(front_mask, dtype=bool)
|
| 274 |
+
|
| 275 |
+
person_results = person_yolo.predict(source=rgb, conf=0.5, iou=0.45, verbose=False)
|
| 276 |
+
hand_results = hand_yolo.predict(source=rgb, conf=0.5, iou=0.45, verbose=False)
|
| 277 |
+
person_boxes = []
|
| 278 |
+
hand_boxes = []
|
| 279 |
+
|
| 280 |
+
if len(person_results) > 0 and person_results[0].boxes is not None and len(person_results[0].boxes) > 0:
|
| 281 |
+
for box in person_results[0].boxes:
|
| 282 |
+
person_boxes.append(box.xyxy.detach().cpu().numpy()[0])
|
| 283 |
+
|
| 284 |
+
if len(hand_results) > 0 and hand_results[0].boxes is not None and len(hand_results[0].boxes) > 0:
|
| 285 |
+
for box in hand_results[0].boxes:
|
| 286 |
+
hand_boxes.append(box.xyxy.detach().cpu().numpy()[0])
|
| 287 |
+
|
| 288 |
+
if len(front_bboxes) > 0:
|
| 289 |
+
need_inpaint = True
|
| 290 |
+
inpaintable_indexes = []
|
| 291 |
+
|
| 292 |
+
for i, fb in enumerate(front_bboxes, start=1):
|
| 293 |
+
contained = any(bbox_contained(fb, mb) for mb in near_bboxes)
|
| 294 |
+
inpaintable = False
|
| 295 |
+
|
| 296 |
+
if contained:
|
| 297 |
+
fx1, fy1, fx2, fy2 = fb
|
| 298 |
+
fb_exclusive = np.array([fx1, fy1, fx2 + 1, fy2 + 1], dtype=np.int32)
|
| 299 |
+
detected_hand = False
|
| 300 |
+
|
| 301 |
+
for xyxy in hand_boxes:
|
| 302 |
+
area_a = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
| 303 |
+
area_b = (fb_exclusive[2] - fb_exclusive[0]) * (fb_exclusive[3] - fb_exclusive[1])
|
| 304 |
+
|
| 305 |
+
if area_a > area_b:
|
| 306 |
+
a = xyxy
|
| 307 |
+
b = fb_exclusive
|
| 308 |
+
else:
|
| 309 |
+
a = fb_exclusive
|
| 310 |
+
b = xyxy
|
| 311 |
+
|
| 312 |
+
if overlap_ratio(a, b) >= 0.75:
|
| 313 |
+
detected_hand = True
|
| 314 |
+
|
| 315 |
+
break
|
| 316 |
+
|
| 317 |
+
if detected_hand:
|
| 318 |
+
inpaintable = True
|
| 319 |
+
|
| 320 |
+
else:
|
| 321 |
+
detected_person = False
|
| 322 |
+
|
| 323 |
+
for xyxy in person_boxes:
|
| 324 |
+
area_a = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
| 325 |
+
area_b = (fb_exclusive[2] - fb_exclusive[0]) * (fb_exclusive[3] - fb_exclusive[1])
|
| 326 |
+
|
| 327 |
+
if area_a > area_b:
|
| 328 |
+
a = xyxy
|
| 329 |
+
b = fb_exclusive
|
| 330 |
+
else:
|
| 331 |
+
a = fb_exclusive
|
| 332 |
+
b = xyxy
|
| 333 |
+
|
| 334 |
+
if overlap_ratio(a, b) >= 0.75:
|
| 335 |
+
detected_person = True
|
| 336 |
+
|
| 337 |
+
break
|
| 338 |
+
|
| 339 |
+
if not detected_person:
|
| 340 |
+
inpaintable = True
|
| 341 |
+
|
| 342 |
+
inpaintable_indexes.append(inpaintable)
|
| 343 |
+
|
| 344 |
+
if all(inpaintable_indexes):
|
| 345 |
+
need_inpaint = True
|
| 346 |
+
|
| 347 |
+
for i, fb in enumerate(front_bboxes, start=1):
|
| 348 |
+
inpaint_mask |= (front_labels == i)
|
| 349 |
+
|
| 350 |
+
else:
|
| 351 |
+
need_inpaint = False
|
| 352 |
+
|
| 353 |
+
else:
|
| 354 |
+
need_inpaint = False
|
| 355 |
+
|
| 356 |
+
if need_inpaint:
|
| 357 |
+
hi_labels, hi_bboxes = connected_components_8((depth >= edges[1]) & (depth < edges[len(edges) - 1]))
|
| 358 |
+
|
| 359 |
+
for cid in range(1, hi_labels.max() + 1):
|
| 360 |
+
comp = (hi_labels == cid)
|
| 361 |
+
median = np.median(depth[comp])
|
| 362 |
+
depth_mod[comp] = median
|
| 363 |
+
|
| 364 |
+
keep_mask = (depth < edges[1])
|
| 365 |
+
depth_mod[keep_mask] = depth[keep_mask]
|
| 366 |
+
depth_mod[depth >= edges[len(edges) - 1]] = edges[len(edges) - 1]
|
| 367 |
+
|
| 368 |
+
else:
|
| 369 |
+
hi_labels, hi_bboxes = connected_components_8(depth >= edges[1])
|
| 370 |
+
|
| 371 |
+
for cid in range(1, hi_labels.max() + 1):
|
| 372 |
+
comp = (hi_labels == cid)
|
| 373 |
+
median = np.median(depth[comp])
|
| 374 |
+
depth_mod[comp] = median
|
| 375 |
+
|
| 376 |
+
keep_mask = (depth < edges[1])
|
| 377 |
+
depth_mod[keep_mask] = depth[keep_mask]
|
| 378 |
+
|
| 379 |
+
depth = depth_mod
|
| 380 |
+
layers = []
|
| 381 |
+
|
| 382 |
+
for i in reversed(range(n_layers)):
|
| 383 |
+
if i > 0:
|
| 384 |
+
if i < n_layers - 1:
|
| 385 |
+
mask = (depth >= edges[i]) & (depth < edges[i + 1])
|
| 386 |
+
|
| 387 |
+
if rgb[mask].size > 0 and need_inpaint:
|
| 388 |
+
need_inpaint = False
|
| 389 |
+
|
| 390 |
+
hole_mask = Image.fromarray((inpaint_mask * 255).astype(np.uint8), mode='L').filter(ImageFilter.BoxBlur(16))
|
| 391 |
+
inpaint_image = lama(rgb_image, hole_mask)
|
| 392 |
+
|
| 393 |
+
if inpaint_image.size != (width, height):
|
| 394 |
+
inpaint_image = inpaint_image.resize((width, height), Image.Resampling.BICUBIC)
|
| 395 |
+
|
| 396 |
+
inpaint = np.asarray(inpaint_image.convert('RGB'))
|
| 397 |
+
|
| 398 |
+
rgba = np.zeros((height, width, 4), np.uint8)
|
| 399 |
+
rgba[..., :3][inpaint_mask] = inpaint[..., :3][inpaint_mask]
|
| 400 |
+
rgba[..., 3][inpaint_mask] = 255
|
| 401 |
+
rgba[..., :3][mask] = inpaint[..., :3][mask]
|
| 402 |
+
rgba[..., 3][mask] = 255
|
| 403 |
+
|
| 404 |
+
layers.append(feather(Image.fromarray(rgba, 'RGBA')))
|
| 405 |
+
|
| 406 |
+
continue
|
| 407 |
+
|
| 408 |
+
else:
|
| 409 |
+
mask = (depth >= edges[i])
|
| 410 |
+
|
| 411 |
+
rgba = np.zeros((height, width, 4), np.uint8)
|
| 412 |
+
rgba[..., :3][mask] = rgb[mask]
|
| 413 |
+
rgba[..., 3][mask] = 255
|
| 414 |
+
|
| 415 |
+
layers.append(feather(Image.fromarray(rgba, 'RGBA')))
|
| 416 |
+
|
| 417 |
+
else:
|
| 418 |
+
mask = (depth < edges[1])
|
| 419 |
+
rgba = np.zeros((height, width, 4), np.uint8)
|
| 420 |
+
rgba[..., :3][mask] = rgb[mask]
|
| 421 |
+
rgba[..., 3][mask] = 255
|
| 422 |
+
|
| 423 |
+
mask_image = Image.fromarray(((rgba[..., 3] == 0) * 255).astype(np.uint8), mode='L').filter(ImageFilter.BoxBlur(16))
|
| 424 |
+
inpaint_image = lama(rgb_image, mask_image)
|
| 425 |
+
|
| 426 |
+
if inpaint_image.size != (width, height):
|
| 427 |
+
inpaint_image = inpaint_image.resize((width, height), Image.Resampling.BICUBIC)
|
| 428 |
+
|
| 429 |
+
layers.append(inpaint_image)
|
| 430 |
+
|
| 431 |
+
return layers
|