Masaaki Kawata commited on
Commit
34422ec
Β·
1 Parent(s): 9423a8c

Update parallax.py

Browse files
Files changed (1) hide show
  1. parallax.py +6 -4
parallax.py CHANGED
@@ -13,7 +13,6 @@ load_dotenv(verbose=False)
13
 
14
  DEPTH_ANYTHING = DepthAnythingV2(**{'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]})
15
  DEPTH_ANYTHING.load_state_dict(torch.load(hf_hub_download(repo_id='depth-anything/Depth-Anything-V2-Large', filename='depth_anything_v2_vitl.pth', repo_type='model', token=os.environ['HF_TOKEN']), map_location='cpu'))
16
- DEPTH_ANYTHING = DEPTH_ANYTHING.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').eval()
17
  HAND_YOLO = YOLO(hf_hub_download('Bingsu/adetailer', 'hand_yolov8n.pt', token=os.environ['HF_TOKEN']))
18
  PERSON_YOLO = YOLO(hf_hub_download('Bingsu/adetailer', 'person_yolov8n-seg.pt', token=os.environ['HF_TOKEN']))
19
  LAMA = None
@@ -233,6 +232,8 @@ def feather(image: Image.Image, gauss_radius=1, band_px=1, strength=1.0) -> Imag
233
 
234
 
235
  def generate_parallax_images(image, n_layers=5, maximum=2048):
 
 
236
  rgb_image = resize_iamge(image.convert('RGB'), maximum)
237
  width, height = rgb_image.size
238
  rgb = np.asarray(rgb_image)
@@ -240,7 +241,8 @@ def generate_parallax_images(image, n_layers=5, maximum=2048):
240
  if LAMA is None:
241
  LAMA = SimpleLama(device='cuda' if torch.cuda.is_available() else 'cpu')
242
 
243
- depth = DEPTH_ANYTHING.infer_image(rgb[:, :, ::-1])
 
244
 
245
  n_clusters = n_layers
246
  x = depth.reshape(-1, 1)
@@ -269,8 +271,8 @@ def generate_parallax_images(image, n_layers=5, maximum=2048):
269
 
270
  inpaint_mask = np.zeros_like(front_mask, dtype=bool)
271
 
272
- person_results = PERSON_YOLO.predict(source=rgb, conf=0.5, iou=0.45, verbose=False)
273
- hand_results = HAND_YOLO.predict(source=rgb, conf=0.5, iou=0.45, verbose=False)
274
  person_boxes = []
275
  hand_boxes = []
276
 
 
13
 
14
  DEPTH_ANYTHING = DepthAnythingV2(**{'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]})
15
  DEPTH_ANYTHING.load_state_dict(torch.load(hf_hub_download(repo_id='depth-anything/Depth-Anything-V2-Large', filename='depth_anything_v2_vitl.pth', repo_type='model', token=os.environ['HF_TOKEN']), map_location='cpu'))
 
16
  HAND_YOLO = YOLO(hf_hub_download('Bingsu/adetailer', 'hand_yolov8n.pt', token=os.environ['HF_TOKEN']))
17
  PERSON_YOLO = YOLO(hf_hub_download('Bingsu/adetailer', 'person_yolov8n-seg.pt', token=os.environ['HF_TOKEN']))
18
  LAMA = None
 
232
 
233
 
234
  def generate_parallax_images(image, n_layers=5, maximum=2048):
235
+ global LAMA
236
+
237
  rgb_image = resize_iamge(image.convert('RGB'), maximum)
238
  width, height = rgb_image.size
239
  rgb = np.asarray(rgb_image)
 
241
  if LAMA is None:
242
  LAMA = SimpleLama(device='cuda' if torch.cuda.is_available() else 'cpu')
243
 
244
+ depth_anything = DEPTH_ANYTHING.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').eval()
245
+ depth = depth_anything.infer_image(rgb[:, :, ::-1])
246
 
247
  n_clusters = n_layers
248
  x = depth.reshape(-1, 1)
 
271
 
272
  inpaint_mask = np.zeros_like(front_mask, dtype=bool)
273
 
274
+ person_results = PERSON_YOLO.predict(source=rgb, conf=0.5, iou=0.45, verbose=False, device='0' if torch.cuda.is_available() else 'cpu')
275
+ hand_results = HAND_YOLO.predict(source=rgb, conf=0.5, iou=0.45, verbose=False, device='0' if torch.cuda.is_available() else 'cpu')
276
  person_boxes = []
277
  hand_boxes = []
278